

SANDIA REPORT
SAND2014-16973
Unlimited Release
Printed August 2014

Water Security Toolkit User Manual
Version 1.2

Katherine Klise

1
, John Siirola

1
, David Hart

1
, William Hart

1
, Cynthia Phillips

1
, Terranna Haxton

2
, Regan

Murray
2
, Robert Janke

2
, Thomas Taxon

3
, Carl Laird

4
, Arpan Seth

4
, Gabriel Hackebeil

4
, Shawn McGee

4
,

Angelica Mann
4

1
Sandia National Laboratories, PO Box 5800 MS 0751, Albuquerque, NM 87185

2
National Homeland Security Research Center, Office of Research and Development, U.S. Environmental

Protection Agency, Cincinnati, OH 45256

3
Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439

4
Texas A&M University, Chemical Engineering Department, College Station, TX 77843

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the

accuracy, completeness, or usefulness of any information, apparatus, product, or process

disclosed, or represent that its use would not infringe privately owned rights. Reference herein

to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,

recommendation, or favoring by the United States Government, any agency thereof, or any of

their contractors or subcontractors. The views and opinions expressed herein do not

necessarily state or reflect those of the United States Government, any agency thereof, or any

of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from

 U.S. Department of Energy

 Office of Scientific and Technical Information

 P.O. Box 62

 Oak Ridge, TN 37831

 Telephone: (865) 576-8401

 Facsimile: (865) 576-5728

 E-Mail: reports@adonis.osti.gov

 Online ordering: http://www.osti.gov/bridge

Available to the public from

 U.S. Department of Commerce

 National Technical Information Service

 5285 Port Royal Rd.

 Springfield, VA 22161

 Telephone: (800) 553-6847

 Facsimile: (703) 605-6900

 E-Mail: orders@ntis.fedworld.gov

 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2014-16973

Unlimited Release

Printed August 2014

Water Security Toolkit User Manual
Version 1.2

Katherine Klise

1
, John Siirola

1
, David Hart

1
, William Hart

1
, Cynthia Phillips

1
, Terranna Haxton

2
, Regan

Murray
2
, Robert Janke

2
, Thomas Taxon

3
, Carl Laird

4
, Arpan Seth

4
, Gabriel Hackebeil

4
, Shawn McGee

4
,

Angelica Mann
4

1
Sandia National Laboratories, PO Box 5800 MS 0751, Albuquerque, NM 87185

2
National Homeland Security Research Center, Office of Research and Development, U.S. Environmental

Protection Agency, Cincinnati, OH 45256

3
Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439

4
Texas A&M University, Chemical Engineering Department, College Station, TX 77843

Abstract

The Water Security Toolkit (WST) is a suite of open source software tools that can be used by water

utilities to create response strategies to reduce the impact of contamination in a water distribution

network. WST includes hydraulic and water quality modeling software, optimization methodologies, and

visualization tools to identify: (1) sensor locations to detect contamination, (2) locations in the network in

which the contamination was introduced, (3) hydrants to remove contaminated water from the distribution

system, (4) locations in the network to inject decontamination agents to inactivate, remove, or destroy

contaminants, (5) locations in the network to take grab samples to help identify the source of

contamination and (6) valves to close in order to isolate contaminated areas of the network. This user

manual describes the different components of WST, along with examples and case studies.

License Notice

The Water Security Toolkit (WST) v.1.2

Copyright c© 2012 Sandia Corporation. Under the terms of Contract DE-AC04-94AL85000, there is a
non-exclusive license for use of this work by or on behalf of the U.S. government.

This software is distributed under the Revised BSD License (see below). In addition, WST leverages a
variety of third-party software packages, which have separate licensing policies:

Acro Revised BSD License
argparse Python Software Foundation License
Boost Boost Software License
Coopr Revised BSD License
Coverage BSD License
Distribute Python Software Foundation License / Zope Public License
EPANET Public Domain
EPANET-ERD Revised BSD License
EPANET-MSX GNU Lesser General Public License (LGPL) v.3
gcovr Revised BSD License
GRASP AT&T Commercial License for noncommercial use; includes randomsample and

sideconstraints executable files
LZMA SDK Public Domain
nose GNU Lesser General Public License (LGPL) v.2.1
ordereddict MIT License
pip MIT License
PLY BSD License
PyEPANET Revised BSD License
Pyro MIT License
PyUtilib Revised BSD License
PyYAML MIT License
runpy2 Python Software Foundation License
setuptools Python Software Foundation License / Zope Public License
six MIT License
TinyXML zlib License
unittest2 BSD License
Utilib Revised BSD License
virtualenv MIT License
Vol Common Public License
vpykit Revised BSD License

Additionally, some precompiled WST binary distributions might bundle other third-party executables files:
Coliny Revised BSD License (part of Acro project)
Dakota GNU Lesser General Public License (LGPL) v.2.1
PICO Revised BSD License (part of Acro project)

i

Revised BSD License

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of Sandia National Laboratories nor Sandia Corporation nor the names of its con-
tributors may be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

ii

Acknowledgements

This work was supported by the U.S. Environmental Protection Agency through its Office of Research and
Development (Interagency Agreement # DW8992192801). The material in this document has been subject
to technical and policy review by the U.S. EPA, and approved for publication. The views expressed by
individual authors, however, are their own, and do not necessarily reflect those of the U.S. Environmental
Protection Agency. Mention of trade names, products, or services does not convey official U.S. EPA approval,
endorsement, or recommendation.

The Water Security Toolkit is an extension of the Threat Ensemble Vulnerability Assessment-Sensor Place-
ment Optimization Tool (TEVA-SPOT), which was also developed with funding from the U.S. Environ-
mental Protection Agency through its Office of Research and Development (Interagency Agreement #
DW8992192801). The authors acknowledge the following individuals for their contributions to the devel-
opment of TEVA-SPOT: Jonathan Berry (Sandia National Laboratories), Erik Boman (Sandia National
Laboratories), Lee Ann Riesen (Sandia National Laboratories), James Uber (University of Cincinnati), and
Jean-Paul Watson (Sandia National Laboratories).

iii

Acronyms

ATUS American Time-Use Survey
BLAS Basic linear algebra sub-routines
CFU Colony-forming unit
CVAR Conditional value at risk
CWS Contamination warning system
EA Evolutionary algorithm
EDS Event detection system
EPA U.S. Environmental Protection Agency
EC Extent of Contamination
ERD EPANET results database file
GLPK GNU Linear Programming Kit
GRASP Greedy randomized adaptive sampling process
HEX Hexadecimal
HTML HyperText markup language
INP EPANET input file
LP Linear program
MC Mass consumed
MILP Mixed integer linear program
MIP Mixed integer program
MSX Multi-species extension for EPANET
NFD Number of failed detections
NS Number of sensors
NZD Non-zero demand
PD Population dosed
PE Population exposed
PK Population killed
TAI Threat assessment input file
TCE Tailed-conditioned expectation
TD Time to detection
TEC Timed extent of contamination
TEVA Threat ensemble vulnerability assessment
TSB Tryptic soy broth
TSG Threat scenario generation file
TSI Threat simulation input file
VAR Value at risk
VC Volume consumed
WST Water Security Toolkit
YML YAML configuration file format for WST

iv

Symbols

Notation Definition Example

{, } set brackets {1,2,3} means a set containing the values 1,2, and 3.

∈ is an element of s ∈ S means that s is an element of the set S.

∀ for all s = 1 ∀ s ∈ S means that the statement s = 1 is true for all s in
set S.

∑
summation

∑n
i=1 si means s1 + s2 + · · ·+ sn.

\ set minus S \ T means the set that contains all those elements of S that are
not in set T .

| given | is used to define conditional probability. P (s|t) means the prob-
ability of s occurring given that t occurs.

|...| cardinality Cardinality of a set is the number of elements of the set. If set S
= {2,4,6}, then |S| = 3.

v

Contents

1 Introduction 1

2 Getting Started 4

2.1 Obtaining the Water Security Toolkit . 4

2.2 Dependencies of the Water Security Toolkit . 4

2.3 Installing the Water Security Toolkit Binary Distributions . 6

2.4 Compiling the Water Security Toolkit Source Code . 6

2.4.1 Obtaining the Water Security Toolkit Source Code . 7

2.4.2 Configuring the Python Virtual Environment . 7

2.4.3 Building the C++ Executable Files . 7

2.5 Basic Usage of the Water Security Toolkit . 8

2.6 Verifying Installation of the Water Security Toolkit . 8

2.7 Uninstalling the Water Security Toolkit . 9

3 Contaminant Transport 10

3.1 Hydraulic and Water Quality Analysis . 10

3.1.1 EPANET and EPANET-MSX . 10

3.1.2 Merlion . 11

3.2 Contaminant Transport Scenarios . 11

3.3 tevasim Subcommand . 12

3.3.1 Configuration File . 12

3.3.2 Configuration Options . 12

3.3.3 Subcommand Output . 14

3.4 Contaminant Transport Examples . 14

3.4.1 Example 1 . 15

3.4.2 Example 2 . 16

4 Impact Assessment 17

4.1 Impact Metrics . 18

vi

4.2 Human Health Impact Model . 20

4.2.1 Population . 21

4.2.2 Cumulative Dose . 21

4.2.3 Response . 22

4.2.4 Disease Progression Model . 23

4.3 sim2Impact Subcommand . 23

4.3.1 Configuration File . 23

4.3.2 Configuration Options . 24

4.3.3 Subcommand Output . 25

4.4 Impact Assessment Examples . 25

4.4.1 Example 1 . 25

4.4.2 Example 2 . 26

4.4.3 Example 3 . 26

5 Sensor Placement 28

5.1 Sensor Placement Formulations . 28

5.1.1 Expected-Impact Formulation . 28

5.1.2 Robust Formulations . 29

5.1.3 Side-Constrained Formulation . 31

5.1.4 Min-Cost Formulation . 32

5.2 Sensor Placement Solvers . 32

5.3 sp Subcommand . 33

5.3.1 Configuration File . 34

5.3.2 Configuration Options . 34

5.3.3 Subcommand Output . 39

5.4 Sensor Placement Examples . 42

5.4.1 Example 1: Solving eSP with a MIP Solver . 42

5.4.2 Example 2: Evaluating Solutions to eSP with Multiple Impact Files 44

5.4.3 Example 3: Solving eSP with a GRASP Solver . 46

5.4.4 Example 4: Solving wSP with a MIP Solver . 47

5.4.5 Example 5: Solving cvarSP with a MIP Solver . 49

5.4.6 Example 6: Solving scSP with a MIP Solver . 50

5.4.7 Example 7: Solving mcSP with a MIP Solver . 53

6 Hydrant Flushing 55

6.1 Flushing Formulation . 56

vii

6.2 Flushing Solvers . 57

6.2.1 Evolutionary Algorithm . 57

6.2.2 Network Solver . 57

6.3 flushing Subcommand . 58

6.3.1 Configuration File . 58

6.3.2 Configuration Options . 58

6.3.3 Subcommand Output . 63

6.4 Flushing Response Examples . 65

6.4.1 Example 1 . 65

6.4.2 Example 2 . 68

6.4.3 Example 3 . 69

7 Booster Station Placement 71

7.1 Booster Placement Using Multi-species Reaction . 72

7.1.1 Booster MSX Solvers . 73

7.1.1.1 Evolutionary Algorithm . 73

7.1.1.2 Network Solver . 73

7.1.2 booster_msx Subcommand . 74

7.1.2.1 Configuration File . 74

7.1.2.2 Configuration Options . 74

7.1.2.3 Subcommand Output . 79

7.2 Booster Placement Using Neutralization or Limiting Reagent Reaction 80

7.2.1 Neutralization NEUTRAL Formulation . 80

7.2.2 Limiting Reagent LIMIT Formulation . 81

7.2.3 Booster MIP Solvers . 82

7.2.4 booster_mip Subcommand . 82

7.2.4.1 Configuration File . 82

7.2.4.2 Configuration Options . 82

7.2.4.3 Subcommand Output . 87

7.3 Booster Placement Examples . 89

7.3.1 Example 1 . 89

7.3.2 Example 2 . 90

8 Source Identification 92

8.1 Source Identification Formulations . 93

8.1.1 MIP Formulations . 93

viii

8.1.2 Bayesian Probability Based Formulation . 95

8.1.3 Contaminant Status Algorithm (CSA) . 95

8.2 Source Identification Solvers . 96

8.3 inversion Subcommand . 96

8.3.1 Configuration File . 96

8.3.2 Configuration Options . 96

8.3.3 Subcommand Output . 99

8.4 Source Identification Examples . 99

8.4.1 Example 1 . 100

8.4.2 Example 2 . 101

9 Grab Sampling 103

9.1 Grab Sampling Formulation . 103

9.2 Grab Sampling Solvers . 104

9.3 grabsample Subcommand . 104

9.3.1 Configuration File . 104

9.3.2 Configuration Options . 105

9.3.3 Subcommand Output . 108

9.4 Grab Sampling Example . 108

10 Visualization 111

10.1 Color and Shape Options . 112

10.2 Data from YAML Files . 112

10.3 visualization Subcommand . 113

10.3.1 Configuration File . 113

10.3.2 Configuration Options . 115

10.3.3 Subcommand Output . 118

10.4 Visualization Examples . 118

10.4.1 Example 1 . 118

10.4.2 Example 2 . 121

11 Advanced Topics and Case Studies 123

11.1 Merlion Water Quality Model . 123

11.2 Average-case Sensor Placement . 125

11.2.1 Computing a Bound on the Best Sensor Placement Value 125

11.2.2 Managing Sensor Placement Locations . 127

11.2.3 Limited-Memory Sensor Placement Techniques . 127

ix

Scenario Aggregation: . 128

Filtering Impacts: . 128

Feasible Locations: . 128

Witness Aggregation: . 128

Skeletonization: . 129

Explicit Memory Management: . 129

11.2.4 Evaluating a Sensor Placement . 129

11.3 Source Identification with Grab Samples Case Study . 132

11.3.1 Case Study . 132

11.3.2 Cycle 1 . 134

11.3.3 Cycle 2 . 134

11.3.4 Cycle 3 . 135

11.4 Flushing with Source Identification Case Study . 136

12 File Formats 142

12.1 Configuration File . 142

12.2 Cost File . 144

12.3 ERD File . 145

12.4 Impact File . 145

12.5 Imperfect Junction Class File . 145

12.6 Imperfect Sensor Class File . 146

12.7 Measurements File . 146

12.8 Nodemap File . 147

12.9 Scenariomap File . 147

12.10Sensor Placement File . 147

12.11TAI File . 148

12.12TSG File . 149

12.13TSI File . 150

12.14Weight File . 151

13 Executable Files 152

13.1 evalsensor . 152

13.1.1 Usage . 152

13.1.2 Options . 152

13.1.3 Arguments . 153

13.2 filter_impacts . 154

x

13.2.1 Usage . 154

13.2.2 Options . 154

13.2.3 Arguments . 154

13.3 measuregen . 155

13.3.1 Usage . 155

13.3.2 Options . 155

13.3.3 Arguments . 156

13.4 scenarioAggr . 157

13.4.1 Usage . 157

13.4.2 Options . 157

13.4.3 Arguments . 157

13.5 spotSkeleton . 158

13.5.1 Usage . 158

13.5.2 Arguments . 158

References 159

xi

List of Figures

2.1 The tevasim template screen output. 9

3.1 Contaminant transport simulation flowchart. 10

3.2 The tevasim configuration template file. 12

3.3 Layout of the EPANET Example Network 3. 15

3.4 Example TSG contamination scenario file. 15

3.5 The tevasim configuration file for example 1. 16

3.6 The tevasim configuration file for example 2. 16

4.1 Impact assessment flowchart. 17

4.2 The sim2Impact configuration template file. 24

4.3 The sim2Impact configuration file for example 1. 26

4.4 The sim2Impact configuration file for example 2. 26

4.5 The sim2Impact configuration file for example 3. 27

5.1 Sensor placement flowchart. 28

5.2 The sp configuration template file. 41

5.3 The sp configuration file for example 1. 42

5.4 The sp YAML output file for example 1. 43

5.5 The evalsensor output for sp example 1. 43

5.6 The sp configuration file for example 2. 44

5.7 The evalsensor output for sp example 2. 45

5.8 The sp configuration file for example 3. 46

5.9 The evalsensor output for sp example 3. 47

5.10 The sp configuration file for example 4. 48

5.11 The evalsensor output for sp example 4. 48

5.12 The sp configuration file for example 5. 49

5.13 The evalsensor output for sp example 5. 50

5.14 The sp configuration file for example 6. 51

xii

5.15 The evalsensor output for sp example 6. 52

5.16 The sp configuration file for example 7. 53

5.17 The evalsensor output for sp example 7. 54

6.1 Flushing response simulation flowchart. 56

6.2 The flushing configuration template file. 64

6.3 The flushing configuration file for example 1. 66

6.4 The flushing YAML output file for example 1. 67

6.5 The flushing configuration file for example 2. 68

6.6 The flushing YAML output file for example 2. 69

6.7 The flushing configuration file for example 3. 70

6.8 The flushing YAML output file for example 3. 70

7.1 Multi-species reaction booster placement flowchart. 72

7.2 MIP booster placement flowchart. 72

7.3 The booster_msx configuration template file. 75

7.4 The booster_mip configuration template file. 88

7.5 The booster_mip configuration file for example 1. 89

7.6 The booster_mip YAML output file for example 1. 90

7.7 The booster_msx configuration file for example 2. 91

8.1 Contamination source identification flowchart. 92

8.2 Two different injection profiles used by the formulation variations. 94

8.3 The inversion configuration template file. 97

8.4 The inversion configuration file for example 1. 100

8.5 The inversion YAML output file for example 1. 101

8.6 The inversion configuration file for example 2. 102

8.7 The inversion YAML output file for example 2. 102

9.1 Grab sampling flowchart. 103

9.2 The grabsample configuration template file. 105

9.3 The grabsample configuration file for example 1. 109

9.4 The grabsample YAML output for example 1. 110

10.1 Visualization flowchart. 112

10.2 The visualization configuration template file. 114

10.3 The visualization configuration file for example 1. 119

xiii

10.4 Graphic from visualization example 1. 120

10.5 The visualization configuration file for example 2. 121

10.6 The location file used in visualization example 2. 121

10.7 Graphic from visualization example 2. 122

11.1 Illustration of the origin tracking algorithm. 124

11.2 The sp configuration file using the GLPK solver to compute a lower bound. 125

11.3 The sp YAML file with the lower bound from the GLPK solver. 126

11.4 The sp configuration file using the Lagrangian solver. 126

11.5 The sp YAML file with the lower bound from the Lagrangian solver. 127

11.6 The sp configuration file using the Lagrangian solver and the compute bound option. 128

11.7 The evalsensor example output. 130

11.8 The evalsensor output using sensor failure probabilities. 131

11.9 Illustration of the source inversion and grab sample cycling strategy. 132

11.10Fixed sensors (blue) and contamination location (red) for case study. 133

11.11The possible injection nodes (red) and optimal grab sample locations (blue) identified in Cycle
1. 134

11.12The possible injection nodes (red) and optimal grab sample locations (blue) identified in Cycle
2. 135

11.13The possible injection nodes (red) identified in Cycle 3. 136

11.14Net6 water distribution network with water quality sensors. 137

11.15Net6 with positive contamination detection at JUNCTION-1617. 138

11.16Net6 with possible contamination sources identified by inversion subcommand. 139

11.17Net6 with nodes impacted by the 25 possible contamination sources. 140

11.18Net6 with the flushing nodes identified by the flushing subcommand. 141

11.19The reduction in the PE metric for each of the 25 possible contamination sources. 141

xiv

Chapter 1

Introduction

An abundant supply of safe, high-quality drinking water is critical to modern industrialized societies. At
home, water is used for drinking, cooking, washing clothes and bathing. At work, water is used to operate
restaurants, hospitals and manufacturing plants. In our communities, water is used for fighting fires. Conse-
quently, contamination of drinking water infrastructure could severely impact the public health and economic
vitality of a community. The distributed physical layout of drinking water systems makes them inherently
vulnerable to a variety of incidents, such as terrorist attacks, accidents and even natural disasters. The
physical destruction of water infrastructure can disrupt water service to communities, and particularly key
facilities such as hospitals, power stations and military installations. Similarly, contamination with deadly
agents could result in large numbers of illnesses and fatalities.

Since the events of September 11, 2001, water utilities have had increasing concerns about the possibility of
harm to our water quality due to an accidental or intentional contamination incident within a distribution
network. The U.S. EPA’s Response Protocol Toolbox (EPA, 2004) provides recommendations on actions
that water utilities can take to minimize potential impacts to consumers following a contamination threat or
incident. Detection and consequence management are major steps in this protocol. EPA has also developed
modeling and simulation tools to assist in the detection of contamination incidents in water distribution
networks. The Threat Ensemble Vulnerability Assessment-Sensor Placement Optimization Tool, or TEVA-
SPOT (EPA, 2011), identifies the optimal placement of online water quality monitoring sensors to detect
contamination incidents. Another EPA developed tool to assist in detection is the CANARY event detection
system (Hart and McKenna, 2012), which analyzes water quality data from the sensors and identifies periods
of anomalous water quality. These tools work together to help form a contamination warning system (CWS).
The overall goal of a CWS is to detect contamination incidents in time to reduce potential public health and
economic consequences. The current terminology for a CWS is a water quality surveillance and response
system. For more information on CWS, see U.S. EPA Water Security Initiative (EPA, 2013b).

Should a CWS detect the presence of contamination in a water distribution network, consequence manage-
ment must be employed. Decision-making tools that assist water utilities in evaluating and planning various
response strategies are needed to support rapid response to contamination incidents. The Water Security
Toolkit (WST) is a suite of tools that help provide the information necessary to make good decisions resulting
in the minimization of further human exposure to contaminants, and the maximization of the effectiveness
of intervention strategies. WST is intended to assist in:

• Planning response actions to natural disasters and terrorist attacks,

• Developing consequence management plans,

• Informing large-scale exercises/training,

• Planning response actions to address traditional utility challenges, such as pipe breaks and water
quality problems and

1

• Evaluating implications of different response strategies.

For water utilities with hydraulic modeling expertise, WST combined with EPANET-RTX (EPA, 2013a;
Hatchett et al., 2011; Janke et al., 2011) could use data from CANARY, other sensor stations and field
investigations to optimize and implement response actions in real-time.

WST assists in the evaluation of multiple response actions in order to select the most beneficial consequence
management strategy. It includes hydraulic and water quality modeling software and optimization method-
ologies to identify: (1) sensor locations to detect contamination, (2) locations in the network in which the
contamination was introduced, (3) hydrants to remove contaminated water from the distribution system, (4)
locations in the network to inject decontamination agents to inactivate, remove or destroy contaminants, (5)
locations in the network to take grab sample to confirm contamination or cleanup and (6) valves to close in
order to isolate contaminated areas of the network.

This user manual describes the different components of WST. It is also available as an EPA Report EPA
(2013c). The manual contains one chapter on each of the water security tools:

• Contaminant transport

• Impact assessment

• Sensor placement

• Hydrant flushing

• Booster placement

• Source identification

• Grab sampling

• Visualization

Another chapter discusses advanced topics and provides case studies. WST uses YAML format configuration
files to supply input parameters to each water security tool. Additional information on the YAML format
can be found in File Formats Section 12.1.

The contaminant transport simulation, impact assessment and sensor placement optimization tools were
all developed as part of the TEVA-SPOT Toolkit (EPA, 2011). All functionality in TEVA-SPOT has
been replicated in WST using new, user friendly YAML format configuration files. WST builds upon the
simulation and optimization framework of TEVA-SPOT and adds several new features. These features
were all developed to model possible response action plans once contamination has been detected in the
system. These action plans include redirecting flow by either opening hydrants or closing valves, injecting
decontaminant to inactivate biological agents and using sensor measurements to identify possible source
locations.

The main data requirement to use WST is a calibrated water utility network model. Additional input data
is dependent on the WST application. This includes information on the simulated contamination incident(s)
(e.g., type, location(s), amount), the impact metric (e.g., extent of contamination, population exposed),
and the response actions (e.g., flushing hydrants, injecting disinfectant). To optimize a response action,
additional information on the potential locations for water quality sensors, hydrants to flush, valves to close,
disinfectant booster stations and manual grab samples is needed. The operating characteristics of these
different response actions are also required, such as the detection limits of the water quality sensors, the
rate and duration that hydrants can be flushed, the control settings for injecting disinfectant at booster
stations and the number of manual grab samples that can be taken at the same time. More details on the
data requirements are provided in the chapter describing the specific water security tool. In addition, each

2

chapter has example applications. All examples are included with WST and can be found in the examples
folder. These examples use simple networks and data files that are also distributed with WST. The examples
shown in this user manual are all executed on a Linux computer, so the CPU time for each example might
not be the same on computers with different operating systems.

3

Chapter 2

Getting Started

This chapter provides information on downloading and installing WST. WST is an open source toolkit
for modeling and analyzing water distribution systems to minimize the potential impact of contamination
incidents.

2.1 Obtaining the Water Security Toolkit

WST is distributed by Sandia National Laboratories in both source and pre-built binary forms through the
World Wide Web at https://software.sandia.gov/trac/wst. From the main WST web page, click the
Download WST link. The download page has options to download the WST source code as well as pre-built
binary packages for 32- and 64-bit Windows, and 64-bit Linux. For most users, installing pre-built binary
versions of WST is recommended. Along with formal releases, a VOTD (version of the day) build can also
be downloaded. This package is an automated build of the current development branch of the code meant
to facilitate rapid dissemination of research developments to interested partners. VOTD builds should be
considered bleeding edge and might frequently be unstable; as such, general users are discouraged from
relying on them for any production analyses.

Alternatively, the WST source code can be checked out directly from the master Subversion version control
system through https://software.sandia.gov/svn/wst/. In particular, the mainline trunk development
branch can be checked out with

svn checkout https://software.sandia.gov/svn/wst/wst/trunk wst

Individual releases are archived in the https://software.sandia.gov/svn/wst/wst/tags directory. The
repository contains references to external repositories (notably, the EPANET repository on SourceForge).
Please note that your local network configuration might require site-specific Subversion proxy settings, as
well as network access to https://software.sandia.gov and https://epanet.svn.sourceforge.net.

2.2 Dependencies of the Water Security Toolkit

WST is a collection of Python and compiled C++ software. It has dependencies on several third-party
software packages. First and foremost, a Python interpreter must be installed. WST is currently compatible
with Python 2.6 or 2.7. Python 3.x is not yet supported. Python is available from http://python.org/.

The WST source code and binary distributions bundle several additional Python packages, including:

Coopr
A collection of open-source optimization-related Python packages that support a diverse set of
optimization capabilities for formulating and analyzing optimization models. Coopr in turn bundles
several third-party dependency libraries:
argparse

4

https://software.sandia.gov/trac/wst
https://software.sandia.gov/svn/wst/
https://software.sandia.gov/svn/wst/wst/tags
https://software.sandia.gov
https://epanet.svn.sourceforge.net
http://python.org/

A Python command line argument parsing utility.
coverage

A Python utility for capturing and reporting code coverage.
distribute

A Python utility for building and installing Python packages.
gcovr

A utility for parsing and reporting GCOV code coverage reports.
nose

A Python test-harness driver.
ordereddict

A utility that back-ports ordered dictionaries to Python 2.6.
pip

A Python utility for installing Python packages.
ply

A general parser-lexer.
pyro

A utility for managing distributed Python execution.
runpy2

A utility that back-ports runpy functionality to Python 2.4.
setuptools

A Python utility for building and installing Python packages.
six

A utility that provides a portable interface to Python 2.x and 3.x.
unittest2

A utility that back-ports unittest functionality from Python 2.7 to 2.3-2.6.
virtualenv

A utility for creating virtual Python environments.
PyUtilib

A collection of Python utilities, including the testing harness used in WST.
PyEPANET

Python wrappers for the EPANET 2.0 Programmers Toolkit.
PyYAML

A YAML parser and emitter for Python.

WST subcommands can leverage numerous third-party programs that are not available in the WST source
code:

AMPL
A commercial algebraic modeling environment, available from http://www.ampl.com/.

CBC
An open-source mixed-integer linear programming solver, available from https://projects.
coin-or.org/Cbc. The COIN Binary Project provides pre-compiled binaries through the CoinAll
distribution, available from https://projects.coin-or.org/CoinBinary.

CPLEX
A commercial mixed-integer linear programming solver, available from http://www.ibm.com/
software/integration/optimization/cplex-optimizer/.

Coliny
An open-source package that provides algorithms for model transformation and black-box opti-
mization, available as the Acro-coliny project from https://software.sandia.gov/trac/acro/.

Dakota
An open-source package that provides algorithms for black-box optimization, sensitivity analysis,

5

http://www.ampl.com/
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/CoinBinary
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
https://software.sandia.gov/trac/acro/

surrogate modeling and uncertainty quantification, available from http://dakota.sandia.gov/.
For Windows users, the 5.1 MinGW build is recommended.

GLPK
An open-source mixed-integer linear programming solver, available from http://www.gnu.org/
software/glpk/. Pre-compiled binary distributions are available as part of most UNIX-like oper-
ating systems. The GLPK for Windows Project provides pre-compiled Windows binaries, available
from http://winglpk.sourceforge.net/.

Gurobi
A commercial mixed-integer linear programming solver, available from http://www.gurobi.com/.

PICO
An open-source mixed-integer linear programming solver, available as the Acro-pico project from
https://software.sandia.gov/trac/acro/.

Please refer to the individual projects’ documentation for licensing, pricing and installation information.

2.3 Installing the Water Security Toolkit Binary Distributions

Precompiled binary distributions (for Windows and Linux platforms) are distributed as a single ZIP archive.
Installing WST requires unzipping the archive to any location on the hard drive. The archive will create
several folders within the main WST folder:

bin The compiled WST programs and driver utilities
dist Third-party dependencies
doc WST documentation (including this guide)
etc Model files
examples Files associated with the WST subcommand examples

The main WST executable is located in the wst/bin directory. WST can be executed by typing the full path
to the executable (e.g., C:\WST-1.2\bin\wst.exe on Windows or wst-1.2/bin/wst on Linux) or by adding
the wst-1.2/bin directory to the system PATH variable and calling wst from the command line prompt. The
first time the wst command is used a message about configuring Python packages for first use is displayed.
This process is normal and could take several minutes depending on the system.

2.4 Compiling the Water Security Toolkit Source Code

Compiling WST from the source code is an advanced topic and targeted only at potential developers. It
assumes familiarity with compilers and build terminology. General users are strongly recommended to use
the pre-built binary packages whenever possible.

Compiling WST from the source code uses the Python VirtualEnv package to set up a virtual Python
environment within the WST source code distribution. The Python components of WST are installed into
this virtual environment to better insulate WST from the rest of the particular environment (and vice-
versa). The compiled (C++) binary executable files are installed into a bin directory within the source code
distribution. Currently, WST does not support out-of-source builds.

While WST can be compiled from the source code for Windows and Linux operating systems, Windows
users are recommended to leverage the pre-built binary distributions. WST can be compiled for Linux using
a 3-step process:

1. Obtain the WST source code

2. Configure the Python virtual environment

3. Build the C++ executable files

6

http://dakota.sandia.gov/
http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://winglpk.sourceforge.net/
http://www.gurobi.com/
https://software.sandia.gov/trac/acro/

2.4.1 Obtaining the Water Security Toolkit Source Code

The WST source code can either be extracted from a downloaded source zip/tar archive or checked out
directly from the repository using Subversion. The following directions assume that the source code is in the
wst-1.2 directory.

2.4.2 Configuring the Python Virtual Environment

The Python virtual environment is automatically configured by the setup command distributed in the
top-level directory of the source code distribution:

cd ~/wst-1.2
./setup

This configures WST using the system’s default Python interpreter and the bundled versions of the Python
dependencies. A different version of Python can be used with WST by specifying it explicitly when running
the setup command:

cd ~/wst-1.2
python2.7 ./setup

WST can also be configured with the bleeding edge (trunk) versions of the key Python dependencies by
specifying the –trunk option:

cd ~/wst-1.2
./setup --trunk

Setup configures the Python virtual environment within the wst/python directory (e.g.,/wst-1.2/python).
The virtual interpreter and the main wst command both reside in wst/python/bin directory (e.g.,/wst-
1.2/python/bin/wst). If only a single virtual environment is going to be on the machine, adding the
wst/python/bin directory to the system PATH variable is recommended. Alternatively, the lbin and
lpython commands (installed into wst/python/bin) can be used to correctly locate local binaries and the
local virtual python interpreter. To run the wst command from anywhere under the main WST directory,
use the lbin wst command. Similarly, to run the local python (virtual environment) interpreter, use the
lpython command. It is safe to copy both lbin and lpython to other directories (e.g.,/bin).

2.4.3 Building the C++ Executable Files

WST relies on the GNU Autotools to manage the build process for compiled executables. In particular,
Autoconf version 2.60 or newer must be installed on the system along with a relatively new C++ compiler
and linker (e.g., gcc >= 3.4). The build process follows the normal autoreconf – configure – make
sequence:

cd ~/wst-1.2
./setup
autoreconf -v -i -f
./configure
make

It is not recommended to use the make install command. The resulting compiled binaries reside in wst/bin,
and are easily accessed from anywhere under the main WST directory using the lbin command.

This process could be simplified by using the main setup command:
cd ~/wst-1.2
./setup build

7

2.5 Basic Usage of the Water Security Toolkit

The main command line structure to execute a WST subcommand is the following:
wst SUBCOMMAND <configfile>

where SUBCOMMAND is the one of subcommands available under the wst command and configfile is the
configuration file associated with the specified subcommand. The subcommands include the following:

• tevasim

• sim2Impact

• sp

• flushing

• booster_msx

• booster_mip

• inversion

• grabsample

• visualization

Each subcommand is described in more detail in Chapters 3 through 10.

In addition, the –-help option prints information about the different subcommand options available.
wst --help

Each subcommand has the option to generate a template configuration file by using the following command
line:

wst SUBCOMMAND --template <configfile>

where configfile is the name of the template configuration file created for the specified SUBCOMMAND.

2.6 Verifying Installation of the Water Security Toolkit

An example using one of the WST subcommands can be used to verify the proper installation of WST. This
example uses the WST subcommand tevasim, which is documented in Chapter 3.

1. A template configuration file for the tevasim subcommand can be generated using the following com-
mand line, in which verify-wst.yml is the template configuration file to be created:

wst tevasim --template verify-wst.yml

This example assumes that the wst/bin directory was added to the PATH variable. If the path was
not modified, the wst command would be replaced with the full path to the main WST script (e.g.,
C:\WST-1.2\bin\wst) in this and all subsequent commands.

2. The EPANET input file for the example network (Net3.inp) needs to be copied from the wst/ex-
amples/Net3 directory to the current working directory, since it is the network file referenced in the
generated template file. On Windows (assuming WST is installed to C:\WST-1.2), the command line
to copy this file is the following:

copy C:\WST-1.2\examples\Net3\Net3.inp

8

On Linux (assuming WST is installed to ~/wst-1.2), the command line to copy this file is the following:
cp ~/wst-1.2/examples/Net3/Net3.inp

3. The tevasim subcommand using this example is executed with the following command line:
wst tevasim verify-wst.yml

This runs the tevasim subcommand and produces the output shown in Figure 2.1

WST tevasim subcommand

Validating configuration file
Running contaminant transport simulations

WST normal termination

Directory: C:/WST-1.2/examples/
Results file: Net3tevasim_output.yml
Log file: Net3tevasim_output.log

Figure 2.1: The tevasim template screen output.

2.7 Uninstalling the Water Security Toolkit

As WST does not rely on a formal installer, uninstalling WST only requires deleting the main WST directory
(regardless if the pre-built binaries were installed or WST was built from the source code). If the wst/bin
and/or wst/python/bin directories were added to the system PATH variable, these entries should be removed
also.

9

Chapter 3

Contaminant Transport

This chapter describes how to simulate contamination incidents in a water distribution network, which is
one of the first steps before designing a water quality sensor network or evaluating response actions to a
contamination incident. The tevasim subcommand simulates the hydraulics and contaminant transport
within a water distribution network model, which consists of pipe, node, pump, valve, storage tank and
reservoir components. The tevasim subcommand uses the hydraulic engine from EPANET to solve the flow
continuity and headloss equations (Rossman, 2000). Water quality simulations are calculated using either
EPANET (Rossman, 2000), EPANET-MSX (Shang et al., 2011) or Merlion (Mann et al., 2012a). To increase
efficiency when simulating a large ensemble of contamination incidents, the tevasim subcommand uses a
single hydraulic simulation to simulate an ensemble of water quality simulations. A flowchart representation
of the tevasim subcommand is shown in Figure 3.1. The utility network model is defined by an EPANET
compatible network models (INP format) in WST. The simulation input is supplied through the tevasim
WST configuration file.

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Figure 3.1: Contaminant transport simulation flowchart.

3.1 Hydraulic and Water Quality Analysis

Three water quality simulators, EPANET, EPANET-MSX and Merlion, are used within WST. These simu-
lators are explained in more detail in the following subsections.

3.1.1 EPANET and EPANET-MSX

EPANET performs extended-period simulation of the hydraulic and water quality behavior within pressurized
pipe networks. These models can evaluate the expected flow in water distribution systems, and model
the transport of contaminants and related chemical interactions. The multi-species extension, EPANET-
MSX, is also included in WST to simulate contamination incidents using multi-species reactions. Any

10

reaction dynamics between chemical and/or biological species (e.g., chemical-chemical, chemical-biological
or biological-biological) can be modeled and simulated using EPANET-MSX. EPANET-MSX can be used
in sensor network design and booster station placement. More specifics on these applications can be found
in Chapters 5 and 7. Additional information on EPANET can be found at http://www.epa.gov/nrmrl/
wswrd/dw/epanet.html and in the EPANET user manual (Rossman, 2000). Additional information on
EPANET-MSX can be found in the EPANET-MSX user manual (Shang et al., 2011).

3.1.2 Merlion

The tevasim subcommand also includes a water quality modeling framework called Merlion. Unlike
EPANET, Merlion does not model bulk or wall reactions. Given hydraulic information from simulation
packages like EPANET or experimental data, Merlion models the transport of a substance as it spreads
through the water distribution system based on the network dynamic flow patterns. Merlion first formulates
a linear water quality model with explicit all-to-all mapping (inputs include injections at all possible nodes
and time steps, and outputs include concentrations at all possible nodes and time steps). This model is then
used for forward tracing simulations by first specifying the injection profile and then solving the system for
the network concentration profile. The linear model also can be embedded within other numerical applica-
tions or for analysis in many security applications. Using Merlion in the tevasim subcommand can be faster
for multi-scenario simulation; however, it is also more memory intensive. Merlion is also used to identify
booster station locations, contaminant source injection locations and manual grab sample locations. More
specifics about these applications are in Chapters 7, 8 and 9. More information on Merlion can be found in
Section 11.1 and (Mann et al., 2012a).

3.2 Contaminant Transport Scenarios

Contaminant transport scenarios can be defined directly in a WST configuration file or by using a TSI or
TSG file. These options are set in the scenario block of the configuration file for all of the WST subcommands
that require scenarios.

The recommended approach is to define the contamination transport scenarios directly in the scenario block
of the WST configuration file. The options that must be set are the location, type, strength, species (required
only for EPANET-MSX) and start and end times for the contamination scenarios. The injection location
can be specified by a list of EPANET node IDs, or by the key words NZD (non-zero demand nodes) or
ALL (all nodes) to create an ensemble of contaminant scenarios. The injection type can be CONCEN,
MASS, FLOWPACED or SETPOINT as defined in the EPANET user manual(Rossman, 2000). CONCEN
represents the concentration of an external source entering a node and applies only when the node has a net
negative demand. MASS, FLOWPACED and SETPOINT represent booster sources, where a contaminant
is injected directly into the network regardless of nodal demand. A MASS source type adds a fixed mass flow
to that resulting from inflow to the node, while a FLOWPACED booster adds a fixed concentration to the
resultant inflow concentration at the node. A SETPOINT booster fixes the concentration leaving the node
as long as the inflow concentration was below the setpoint. The strength of a MASS source is in units of
mass flow per minute, while CONCEN, FLOWPACED and SETPOINT sources are in units of concentration
(mass per volume). The configuration file defines injection time in minutes and strength in mg/L or mg/min
depending on the injection type.

Alternatively, the contamination transport scenarios can be defined using a TSI or TSG file. Each line of
a TSI file specifies a single contaminant scenario by listing the injection location, type, species (required
only for EPANET-MSX), strength and time frame. Each scenario can include multiple injection locations
and multiple injection species with unique injection strengths and time frames. This format allows for the
greatest flexibility in combined scenario options. For more detail on the TSI file, see File Formats Section
12.13.

The TSG file is a short hand format of the more detailed TSI file. Multiple injection locations can be
specified on a single line. All permutations of the combined locations are used to create multiple scenarios.

11

http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
http://www.epa.gov/nrmrl/wswrd/dw/epanet.html

Each line of the TSG file is limited to a single injection species and time frame. For more detail on the TSG
file, see File Formats Section 12.12. The TSI and TSG files specify the injection time frame in seconds and
the strength units depend on the INP network model file units.

If a TSI file is specified in the WST configuration file, the TSG file and location, type, strength, species,
start time and end time options are overridden. If a TSG file is specified in the WST configuration file,
the location, type, strength, species, start time and end time options specified in the configuration file are
overridden.

3.3 tevasim Subcommand

The tevasim subcommand is executed using the following command line:
wst tevasim <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst tevasim --help

3.3.1 Configuration File

The tevasim subcommand generates a template configuration file using the following command line:
wst tevasim --template <configfile>

The tevasim WST template configuration file is shown in Figure 3.2. Brief descriptions of the options are
included in the template after the # sign.

tevasim configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 3.2: The tevasim configuration template file.

3.3.2 Configuration Options

Full descriptions of the WST configuration options used by the tevasim subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.

12

Required input.
scenario

location
A list that describes the injection locations for the contamination scenarios. The options are:
(1) ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection
locations; (2) NZD, which denotes all nodes with non-zero demands as contamination injection
locations; or (3) an EPANET node ID, which identifies the node where contamination is intro-
duced. This allows easy specification of single or multiple contamination scenarios.
Required input unless a TSG or TSI file is specified.

type
The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOW-
PACED or SETPOINT. See the EPANET manual for additional information about source types
(Rossman, 2000).
Required input unless a TSG or TSI file is specified.

strength
The amount of contaminant injected into the network for the contamination scenarios. If the type
option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.
Required input unless a TSG or TSI file is specified.

species
The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but
only one is injected into the network. For cases where multiple contaminants are injected, a TSI
file is needed.
Required input for EPANET-MSX unless a TSG or TSI file is specified.

start time
The injection start time that defines when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents
an injection that starts at hour 1 of the simulation.
Required input unless a TSG or TSI file is specified.

end time
The injection end time that defines when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents
an injection that ends at hour 2 of the simulation.
Required input unless a TSG or TSI file is specified.

tsg file
The name of the TSG scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSG file will override the location, type, strength, species, start and end
times options specified in the WST configuration file. The TSG file format is documented in File
Formats Section 12.12.
Optional input.

tsi file
The name of the TSI scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSI file will override the TSG file, as well as the location, type, strength,
species, start and end time options specified in the WST configuration file. The TSI file format
is documented in File Formats Section 12.13.
Optional input.

13

msx file
The name of the EPANET-MSX multi-species file that defines the multi-species reactions to be
simulated using EPANET-MSX.
Required input for EPANET-MSX.

msx species
The name of the MSX species whose concentration profile will be saved by the EPANET-MSX
simulation and used for later calculations.
Required input for EPANET-MSX.

merlion
A flag (true or false) to indicate if the Merlion water quality simulator should be used. If an MSX
file is provided, EPANET-MSX will be used.
Required input, default = false.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

3.3.3 Subcommand Output

The tevasim subcommand creates two output files, one is in the YAML file format and the other is a
log file. The YAML file is called <output prefix>tevasim_output.yml and the log file is <output pre-
fix>tevasim_output.log. The YAML file contains the name of the EPANET report file, the name of the
binary ERD database file, the run date and the CPU time. The EPANET report file and binary ERD
database files are described below. The log file contains basic debugging information.

• EPANET report: This file provides information on the EPANET simulations. The EPANET report
file format is described in Appendix C.3 of the EPANET Users Manual (Rossman, 2000).

• ERD database: The database contains the simulation results, and is stored in four files: header file,
index file, hydraulics file and a water quality file. The ERD database format is described in Geib et al.
(2011). This files is not intended to be read by users but rather is read by other WST subcommands.

3.4 Contaminant Transport Examples

An EPANET network model (INP format) and a configuration file are required to run the tevasim subcom-
mand.

The tevasim template configuration file uses the EPANET Example Network 3 (Net3.inp). The network is
shown in Figure 3.3. Net3 contains 92 junctions, 2 reservoirs and 3 tanks. This network has 59 non-zero
demand (NZD) nodes. The network file is setup to run a 48-hour hydraulic and water quality simulation. A
1-hour hydraulic time step and 5-minute water quality time step are used.

The scenario ensemble in the tevasim template configuration file defines a contaminant injection from each
NZD node, with a MASS injection of 100 mg/L, starting at time 0 and injecting for 24 hours (1440 minutes).

To define scenarios that start and stop at multiple times, a TSG file can be used to define the scenario set.
Figure 3.4 shows the example TSG file, Net3.tsg, in which the contamination scenarios are injected at all

14

Figure 3.3: Layout of the EPANET Example Network 3.

NZD nodes starting at 12 am, 6 am, 12 pm and 6 pm for a total of 236 scenarios. Each injection lasts 24
hours and injects a contaminant at 100 mg/L.

; 24-hour events, 12am,6am,12pm, and 6pm

NZD MASS 100 0 86400
NZD MASS 100 21600 108000
NZD MASS 100 43200 129600
NZD MASS 100 64800 151200

Figure 3.4: Example TSG contamination scenario file.

3.4.1 Example 1

The first example uses the Net3.inp network file, the contamination scenario set defined by Net3.tsg and the
Merlion water quality model. The configuration file, tevasim_ex1.yml, for this example is shown in Figure
3.5.

The example can be executed using the following command line:
wst tevasim tevasim_ex1.yml

15

network:
epanet file: Net3/Net3.inp

scenario:
location: null
type: null
strength: null
species: null
start time: null
end time: null
tsg file: Net3/Net3.tsg
tsi file: null
msx file: null
msx species: null
merlion: true

configure:
output prefix: tevasim_ex1/Net3
debug: 0

Figure 3.5: The tevasim configuration file for example 1.

3.4.2 Example 2

The second example uses EPANET-MSX to simulate the transport of multiple contaminants. For a multi-
species simulation, a MSX file and the MSX species must be added to the tevasim configuration file. The
MSX species is the species whose concentration profile will be saved by EPANET-MSX to be used for future
calculations. The MSX species can be different than the species which is injected into the network. The
configuration file, tevasim_ex2.yml, for this example is shown in Figure 3.6. The example uses the Net3.inp
network file and the MSX file, Net3_EColi_TSB.msx, which simulates the reaction dynamics between
Escherichiacoli, chlorine and a tryptic soy broth (TSB), a nutrient broth that helps to grow bacteria. For
more information about this specific reaction dynamics, see the E. coli-TSB model described in Murray
et al. (2011). In this example, both the species and MSX species are the same.

network:
epanet file: Net3/Net3.inp

scenario:
location: [’15’]
type: MASS
strength: 5.77e8
species: EColi
start time: 0
end time: 360
tsg file: null
tsi file: null
msx file: Net3/Net3_EColi_TSB.msx
msx species: EColi
merlion: false

configure:
output prefix: tevasim_ex2/Net3_EColi_TSB
debug: 0

Figure 3.6: The tevasim configuration file for example 2.

The example can be executed using the following command line:
wst tevasim tevasim_ex2.yml

To simulate the simultaneous injection of two species, a TSI file is needed. For example, the TSI file,
Net3_EColi_TSB.tsi, defines the simultaneous injection of E. coli and TSB at multiple locations within
Net 3.

16

Chapter 4

Impact Assessment

The potential consequences of individual contamination scenarios can be quantified using the results from
the contaminant transport simulations and a variety of impact assessment metrics. The sim2Impact sub-
command performs impact assessment using the output threat ensemble database (ERD) from the tevasim
subcommand. This analysis provides all necessary network statistics for sensor network design (described
in Chapter 5) as well as response actions, such as flushing hydrants and boosting disinfectant (described in
Chapters 6 and 7, respectively).

A flowchart representation of the sim2Impact subcommand is shown in Figure 4.1. The threat ensemble
database (ERD) is the output from the tevasim subcommand and is required input for the sim2Impact
subcommand. The consequences input parameters are supplied through the sim2Impact WST configuration
file. Additional input data that describes the exposure and dose response models of a particular contaminant
is required if a human health impact metric is used. These models are defined by parameters listed in a
threat assessment input (TAI) file. More details on the TAI file are provided in the File Formats Section
12.11.

Impact
Assessment

 Threat Ensemble
Database

Consequences
Input

Impact File

Figure 4.1: Impact assessment flowchart.

Several impact metrics are included in the sim2Impact subcommand to reflect different criteria that decision
makers could use in sensor network design or response actions. These metrics include: population dosed
(PD), population exposed (PE), population killed (PK), extent of contamination (EC), timed extent of
contamination (TEC), mass consumed (MC), volume consumed (VC), time to detection (TD) and number
of failed detections (NFD). The equations used to compute the impact metrics are listed in Section 4.1.
Impact metrics are calculated at discrete time steps for a given contamination scenario. The discrete time
steps are defined by the reporting time step and the duration of the water quality simulation.

Human health impacts (PD, PE and PK) can be estimated by combining the water quality simulations with
exposure models. Contaminant-specific data are needed to accurately estimate the health endpoints. For

17

many contaminants, reliable data are lacking, and the ensuing uncertainty in the results must be understood.
More information on the human health impacts is provided in Section 4.2.

4.1 Impact Metrics

Impact assessment results are calculated and stored in an impact file. This file is not typically read by a
WST user, rather it is read by a sensor or response optimization routine. For each contamination scenario,
the impact file contains a list of all the locations (nodes) in the network where a sensor might detect
contamination from a specific scenario. Nodes that do not detect contamination are not included in the
impact file for that specific scenario. For each node that detects contamination, the impact file contains the
detection time and consequence at that time, as measured by one of the impact metrics.

The impact file is used as input for sensor placement optimization and during the optimization process of
response actions, such as flushing hydrants and boosting disinfectant. When calculating impacts, a detection
threshold can be specified such that contaminants are only detected above a specified concentration limit (the
default limit is zero). Second, a response time can be specified in the sim2Impact configuration file, which
accounts for the time needed to verify the presence of contamination (e.g., by field investigation), inform the
public, and/or initiate flushing, booster disinfection, or other response action (the default response time is
zero). The contamination impact is computed at the time when the response has been initiated (the detection
time plus response time), which is called the effective response time. Finally, a detection confidence can be
defined, which specifies the number of sensors that must detect contamination from any given scenario before
it is considered to be detected, at which time the impacts are calculated (the default is 1 sensor).

The impact file contains four columns of information:

• Column 1 contains the contamination scenario number, a

• Column 2 contains the node location where contamination was detected, i

• Column 3 contains the effective response time in minutes, T ′i
• Column 4 contains the impact at the effective response time as measured by a specified metric, da,i

The impact file is documented in the File Formats Section 12.4. The impact metric, da,i, is used directly in
the sensor placement formulation (Equation 5.1), the flushing formulation and the booster formulation.

The effective response time at node i, T ′i , is calculated using the following equation:

T ′i = min (t : |Cn,t > detection limit| ≥ detection confidence)∆T + response time (4.1)

where Cn,t is the contaminant concentration at node n at time step t for every node and time step in the
water quality simulation. The concentration is typically expressed in units of milligrams per liter (mg/L).
Concentration could also be a count of cells for a biological contaminant, where the units are cells/L or
CFU/L (coliny forming units/L). The length of the reporting time step is denoted as ∆T and has units of
time. For detection, the concentration must be above the detection limit, and the number of detections must
be above the detection confidence. (Note |Cn,t > detection limit| is the number of node, time step pairs
where contaminant was detected above the detection limit, this includes detection at node i).

In the impact file, the impact at the end of the simulation time is included for each contamination scenario.
Essentially, this is the impact if contamination was not detected at any node location, and is often referred
to as the dummy sensor location. For this entry, i is set to -1, T ′i is the time at the end of the water quality
simulation, and da,i is the impact at the end of the simulation.

The impact, da,i, can be computed using one of the following metrics: PD, PE, PK, EC, TEC, MC, VC,
TD and NFD. These metrics are defined in the following equations. In the equations, the effective response
time step for node i, t′i, equals T ′i/∆T , and subscripts n, t and p are used to reference a specific node, time
step and person, respectively.

18

• PDa,i, population dosed, is the total number of individuals that received a cumulative dose of contam-
inant above a specified threshold for scenario a when contamination is detected at node i:

PDa,i =
N∑
n=1

popn∑
p=1

δn,p,t′
i
where δn,p,t′

i
=

{
1 if dn,p,t′

i
> dose threshold

0 otherwise
(4.2)

where N is the number of nodes in the network, popn is the population at node n calculated using
Equation 4.11, dn,p,t′

i
is the cumulative dose for person p at node n at the effective response time step

t′i calculated using Equation 4.15, and dose threshold is defined by the user in the TAI file.

• PEa,i, population exposed, is the number of individuals with a response to a contaminant for scenario
a when contamination is detected at node i:

PEa,i =
N∑
n=1

popnrn,t′
i
≡

N∑
n=1

(In,t′
i
+Dn,t′

i
) (4.3)

where N is the number of nodes in the network, popn is the population at node n calculated using
Equation 4.11, and rn,t′

i
is the percentage of the population at node n at the effective response time

step t′i that responds to a cumulative dose dn,p,t′
i
calculated using Equation 4.18. The variables, In,t′

i

and Dn,t′
i
, are the infected and diseased state, respectively, at node n at the effective response time

step t′i computed from the disease progression model described in Section 4.2.4.

• PKa,i, population killed, is the number of individuals killed by a contaminant for scenario a when
contamination is detected at node i:

PKa,i =
N∑
n=1

Fn,t′
i

(4.4)

where N is the number of nodes in the network and Fn,t′
i
is the fatality state at node n at the effective

response time step t′i computed from the disease progression model described in Section 4.2.4.

• ECa,i, extent of contamination, is the length of contaminated pipe for scenario a when contamination
is detected at node i:

ECa,i =
N∑
n=1

Ln,t′
i
δn,t′

i
where δn,t′

i
=

{
1 if Cn,t′

i
> detection limit

0 otherwise
(4.5)

where N is the number of nodes in the network, Ln,t′
i
is the length of all pipes connected to node n with

flow starting at node n at the effective response time step t′i and Cn,t′i is the contaminant concentration
at node n at the effective response time step t′i. An entire pipe is considered contaminated if the
contaminant enters the pipe.

• TECa,i, timed extent of contamination, is the length of contaminated pipe for scenario a when con-
tamination is detected at node i and includes the length of contaminated pipe each time a node is
contaminated, up to the time when contamination is detected:

TECa,i =
N∑
n=1

t′i∑
t=1

Ln,tδn,t where δn,t =

{
1 if Cn,t > detection limit
0 otherwise

(4.6)

where N is the number of nodes in the network, Ln,t is the length of all pipes connected to node n
with flow starting at node n at time step t and Cn,t is the contaminant concentration at node n at
time step t. An entire pipe is considered contaminated if the contaminant enters the pipe. This metric
is only intended to be used within the flushing response optimization routine, which only uses the the
impact at the end of the simulation time.

19

• MCa,i, mass consumed, is the cumulative mass of the contaminant consumed for scenario a when
contamination is detected at node i:

MCa,i =
N∑
n=1

t′i∑
t=1

Cn,tqn,t∆T (4.7)

where N is the number of nodes in the network, Cn,t is the contaminant concentration at node n at
time step t, qn,t is the demand at node n at time step t and ∆T is the length of the reporting time
step. In other words, this metric measures the mass of the contaminant removed from the system at
node i between the start of the simulation and time t′i.

• V Ca,i, volume consumed, is the cumulative volume of contaminated water consumed for scenario a
when contamination is detected at node i:

V Ca,i =
N∑
n=1

t′i∑
t=1

qn,t∆Tδn,t where δn,t =

{
1 if Cn,t > detection limit
0 otherwise

(4.8)

where N is the number of nodes in the network, Cn,t is the contaminant concentration at node n at
time step t, qn,t is the demand at node n at time step t and ∆T is the length of the reporting time
step. In other words, this metric measures the volume of the contaminant removed from the system at
node i between the start of the simulation and time t′i.

• TDa,i, time to detection, is the time from the beginning of scenario a until contamination is first
detected at a node i.

TDa,i = T ′i − injection start time (4.9)

where T ′i is the effective response time.

• NFDa,i, number of failed detections, is a binary value to indicate the detection of scenario a at node
i:

NFDa,i =

{
1 if scenario a is not detected at node i
0 otherwise

(4.10)

where the total impact is given a value of 1 if scenario a is not detected at node i or the value of 0 if
scenario a is detected at node i. Since the impact file only lists nodes which detect scenarios, all node,
time pairs have a total impact of 0, except for the dummy location (i = -1), which is given a value of
1.

4.2 Human Health Impact Model

The human health impact model is used to compute PD, PE and PK. In order to calculate these metrics,
an estimate of the population ingesting water and the cumulative dose and response for each individual at
each node is required. A disease progression model is used to compute the population susceptible, infected,
diseased and killed given a cumulative dose of contaminant. Input parameters for the human health impact
model are stored in a TAI file. The TAI file format is described in Section 12.11. Additional information on
human health impact models can be found in the EPA compendium report (Murray et al., 2010).

20

4.2.1 Population

The population at each network node can either be defined explicitly in the TAI file using a population
file or calculated based on the demand at each node. The population file has one line per node. Each line
contains the node ID followed by the population value for that node. For the demand-based calculation, it
is assumed that all water leaving the network is consumed by the population. Therefore, the population at
node n, popn, is computed using the following equation:

popn = qn
R

(4.11)

where qn is the average volume of water consumed at node n per day and R is the average volume of water
consumed per capita per day. The variable, R, is set in the TAI file. A USGS report provides usage rates
by state and gives a nationwide average of 179 gallons per capita per day (U.S. Geological Survey, 2004).
Often 200 gallons per capita per day is used for R. The population is assumed to be constant over time.
The water consumption rate is more than just the ingestion of water by people, since it includes all uses of
water, such as domestic, commercial, industrial, agricultural and others.

4.2.2 Cumulative Dose

At each node, the total number of people potentially ingesting water is given by popn. In order to compute the
cumulative dose, additional information is needed, including when and how much a person drinks. Ingestion
timing and volume models are used to make this calculation. Additional information on the ingestion and
volume models can be found in Davis and Janke (2008). Three different ingestion timing models are available:

• Demand-based (D24): assumes that tap water is ingested at every time step in an amount proportional
to the total water demand at that node.

• Fixed (F5): assumes that tap water is ingested at five fixed times during a day. These times are set
to the typical starting times for the three major meals on weekdays (7:00, 12:00 and 18:00) and times
halfway between these meals (9:30 and 15:00).

• Probabilistic (P5): also assumes that tap water is ingested at five times per day at major meals and
halfway between them, but it uses a probabilistic approach to determine meal times. This is based
on data from the American Time-Use Survey (ATUS) (Bureau of Labor Statistics and U.S. Census
Bureau, 2005).

In addition, there are two ingestion volume models:

• Mean (M): assumes the same average quantity of tap water is ingested by all individuals in the popu-
lation who consume tap water.

• Probabilistic (P): uses a probabilistic approach to estimate the volume ingested by individual people.

The ingestion timing model and the volume model are set in the TAI file. The D24 ingestion timing model
is used only with the M volume model. Either the M or P volume models can be used with the F5 and P5
timing models. The volume models are used to determine a per capita ingestion volume, V̂n,p, in liters/day
for each person p at node n. When using the M volume model, V̂n,p is the same for each person and is
commonly set to 1 to 2 liters/day. When using the P volume model, V̂n,p can be different for each person. In
each case, the volume ingested per day, V̂n,p, must be converted to a volume ingested per time step, Vn,p,t,
to calculate cumulative dose for each time step.

When using the D24 ingestion timing model, Vn,p,t is related to the demand at that node. The fraction of
demand water that is ingested at node n at time step t, considering the entire length of the simulation, is

21

computed by:
ρn,t = qn,t∑nsteps

t=1 qn,t
nsteps∆T (4.12)

where qn,t is the demand at node n at time step t, nsteps is number of time steps in the entire simulation
and ∆T is the length of the reporting time step. The length of the simulation equals nsteps∆T . The volume
Vn,p,t is then computed using:

Vn,p,t = ρn,tV̂n,p (4.13)

When using the F5 and P5 ingestion timing models, V̂n,p is divided equally among each time step in which
water is ingested.

Vn,p,t =

{
V̂n,p/5 if t ∈ {ingestion time steps}
0 otherwise

(4.14)

The set of ingestion time steps is calculated by dividing the ingestion times by the length of the reporting
time step. This value is rounded down to the nearest discrete time step. The simulation start time should
first be subtracted from the ingestion times. For example, if the set of ingestion times are defined using the
F5 model as {7:00, 9:30, 12:00, 15:00 and 18:00}, the start time is 4:15, and the reporting time step is a half
hour, the set of ingestion time steps are {5, 10, 15, 21 and 27}.

The cumulative dose for person p at node n at time step t, dn,p,t, is computed using the following equation:

dn,p,t =
t∑

j=1
Cn,jVn,p,j (4.15)

where Vn,p,j is calculated using Equation 4.13 or Equation 4.14 and Cn,j is the contaminant concentration in
the water at node n at time step j as predicted by the water quality simulations. Cumulative dose is given
in number of organisms or mass in milligrams.

4.2.3 Response

Dose-response functions are used to predict the percentage of the population that might experience a par-
ticular health outcome after receiving a specific cumulative dose. Two dose-response functions, r(dn,p,t), are
available in the sim2Impact subcommand:

• Log-Probit model:
r(dn,p,t) = Φ(βln(dn,p,tLD50)) (4.16)

where Φ is the cumulative distribution function of a standard normal random variable, β is related to
the slope of the curve, LD50 (or ID50 for biological agents) is the dose at which 50% of the exposed
population would die and dn,p,t is calculated using Equation 4.15. The parameters β and LD50 are
set in the TAI file.

• Generic logistic function:

r(dn,p,t) = a(1 +me−dn,p,t/τ)
1 + ηe−dn,p,t/τ

where η = eLD50/τ − 2 (4.17)

where a, m, η and τ are function coefficients used to fit the model to available data and dn,p,t is
calculated using Equation 4.15. The parameters a, m, η and τ are set in the TAI file.

The average response, rn,t, of the population at node n at time step t is calculated by:

rn,t =
∑popn
p=1 r(dn,p,t)
popn

(4.18)

where popn is calculated using Equation 4.11 and r(dn,p,t) is calculated using Equation 4.16 or Equation
4.17.

22

4.2.4 Disease Progression Model

To track how the population at each node responds to a specified contaminant over time, a disease progression
model is used. Given the percentage of people at each node who would become ill after being exposed to
the contaminant, disease transmission models predict how the disease would progress over time. Disease
models are used to predict the number of people at each node susceptible to illness from the contaminant
(S), exposed to a lethal or infectious dose (I), experiencing symptoms of disease (D) and either recovering
(R) or being fatally impacted (F). These equations assume that the recovered population does not rejoin
the susceptible population. These quantities are predicted at each node over time according to the following
differential equations:

dS

dt
= −λS (4.19)

dI

dt
= λS − σI (4.20)

dD

dt
= σI − (α+ ν)D (4.21)

dR

dt
= νD (4.22)

dF

dt
= αD (4.23)

where λ is the per capita rate of infection, σ is the per capita rate at which infected move to diseased, α
is the per capita disease induced untreated death rate, and ν is the per capita recovery rate, or the rate at
which diseased moved to recovered or fatal states.

The infection rate, λ, is given by:
λn,t = drn,p,t

dt

Sn,0
Sn,t

(4.24)

where r(dn,p,t) is calculated using Equation 4.16 or Equation 4.17 and S is calculated by Equation 4.19.

In the TAI file, the LATENCY TIME is the inverse of σ, the FATALITY RATE is α and the FATALITY
TIME is the inverse of ν. For more detail on the disease progression model and health impacts, see Murray
et al. (2006).

4.3 sim2Impact Subcommand

The sim2Impact subcommand is executed using the following command line:
wst sim2Impact <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst sim2Impact --help

4.3.1 Configuration File

The sim2Impact subcommand generates a template configuration file using the following command line:
wst sim2Impact --template <configfile>

The sim2Impact WST configuration template is shown in Figure 4.2. Brief descriptions of the options are
included in the configuration template after the # sign.

23

sim2Impact configuration template
impact:

erd file: [Net3.erd] # ERD database file name
metric: [MC] # Impact metric
tai file: null # Health impact file name, required for public health metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection
msx species: null # MSX species used to compute impact

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 4.2: The sim2Impact configuration template file.

4.3.2 Configuration Options

Full descriptions of the WST configuration options used by the sim2Impact subcommand are listed below.

impact
erd file

The name of the ERD database file that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD files (entered as a list) can be
combined to generate a single impact file. This can be used to combine simulation results from
different types of contaminants, in which the ERD files were generated from different TSG files.
Required input.

metric
The impact metric used to compute the impact file. Options include EC, MC, NFD, PD, PE, PK,
TD, TEC or VC. One impact file is created for each metric selected. These metrics are defined
in Section 4.1.
Required input.

tai file
The name of the TAI file that contains health impact information. The TAI file format is docu-
mented in File Formats Section 12.11.
Required input if a public health metric is used (PD, PE or PK).

response time
The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the
network and eliminate the consumption of contaminated water. As the response time increases,
the impact increases because the contaminant affects the network for a greater length of time.
Required input, default = 0 minutes.

detection limit
The concentration thresholds needed to perform detection with a sensor. There must be one
threshold for each ERD file. The units of these detection limits depend on the units of the
contaminant simulated for each ERD file (e.g., number of cells of a biological agent). The units
for detection limit are the same as for the MASS values that are specified in the TSG file.
Required input, default = 0.

detection confidence
The number of sensors that must detect an incident before the impacts are calculated.
Required input, default = 1 sensor.

msx species

24

The name of the MSX species tracked in the EPANET-MSX simulation. This parameter is
required for multi-species contamination incidents created by tevasim subcommand.
Required input for EPANET-MSX, default = first species listed in the ERD file

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

4.3.3 Subcommand Output

The sim2Impact subcommand creates two output files, one is in the YAML file format and the other is
a log file. The YAML file is called <output prefix>sim2Impact_output.yml and the log file is <output
prefix>sim2Impact_output.log. The YAML file contains the names of the impact file(s), the ID file(s), the
nodemap file and the scenario map file, as well as the run date and the CPU time. These files are described
below. The log file contains basic debugging information.

• Impact file: One impact file is generated for each of the impact metrics specified. The file contains
the observed impact at each location where a contamination scenario could be observed by a potential
sensor. This file is not intended to be read by users, but it is used later for sensor placement or other
response optimization. The impact file is documented in the File Formats Section 12.4.

• ID file: For each impact file (e.g., wst_Net3_mc.impact), a corresponding ID file is generated to map
the location IDs back to the network node labels. This file is not intended to be read by users, since
it is used internally by the software code.

• Nodemap file: The nodemap file maps sensor placement IDs to the network node labels (defined by
EPANET). This file is not intended to be read by users, since it is used internally by the software code.
The nodemap file is documented in the File Formats Section 12.8.

• Scenario map file: The scenario map file maps contamination scenario IDs to the network node labels
(defined by EPANET). This file is not intended to be read by users, since it is used internally by the
software code. The scenario map file is documented in the File Formats Section 12.9.

4.4 Impact Assessment Examples

After simulating the fate and transport of contaminants in a water distribution network, the output can
be used to quantify the impacts of the contamination incidents. An ERD file and a configuration file are
required to run the sim2Impact subcommand. In the following examples, the EPANET Example Network
3 is used. The output database, Net3.erd, from the first tevasim subcommand example is used to compute
the impact assessments.

4.4.1 Example 1

Figure 4.3 shows the configuration file, sim2Impact_ex1.yml, for the first sim2Impact subcommand example.
This example computes an impact assessment, based on Net3.erd, for the mass consumed (MC), volume
consumed (VC), extent of contamination (EC), time to detection (TD), number of failed detections (NFD)
and population exposed (PE) impact metrics. The TAI file, Net3_bio.tai, is added to define the human

25

health impact for a biological contaminant. The response time, detection limit and detection confidence are
all set at the default values (i.e., 0, 0, 1, respectively).

impact:
erd file: [Net3/Net3.erd]
metric: [MC, VC, EC, TD, NFD, PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

configure:
output prefix: sim2Impact_ex1/Net3
debug: 0

Figure 4.3: The sim2Impact configuration file for example 1.

The example can be executed using the following command line:
wst sim2Impact sim2Impact_ex1.yml

For each impact metric, an impact file (e.g., Net3_pe.impact) and a corresponding ID file is generated
(e.g., Net3_pe.impact.id). For each contamination scenario (shown in column 1 after a two line header), the
impact file contains a list of nodes in the network (column 2) where a sensor might detect that contamination.
For each such node, the impact file contains the detection time (column 3) and the total impact (column 4)
given a sensor at that node is the first to detect contamination from that scenario.

4.4.2 Example 2

The second example using the sim2Impact subcommand investigates the effect of changing the response time
and detection limit on a specific impact metric, MC. The example 2 configuration file, sim2Impact_ex2.yml,
is shown in Figure 4.4. This example uses a 60-minute response time and a detection limit of 0.1. Note that
the units for detection limit are the same as for the mass values specified in the TSG file.

impact:
erd file: [Net3/Net3.erd]
metric: [MC]
tai file: null
response time: 60
detection limit: [0.1]
detection confidence: 1
msx species: null

configure:
output prefix: sim2Impact_ex2/Net3
debug: 0

Figure 4.4: The sim2Impact configuration file for example 2.

The example can be executed using the following command line:
wst sim2Impact sim2Impact_ex2.yml

4.4.3 Example 3

The sim2Impact example 3 calculates the impact associated with multi-species contamination incidents.
The msx species option specifies which species concentration profile to use to calculate impact metrics. This
option is required for multi-species contamination scenarios created by the tevasim subcommand. The
configuration file for the multi-species example, sim2Impact_ex3.yml, is shown in Figure 4.5. This example

26

uses an ERD file created by EPANET-MSX and computes the MC impact metric for the E. coli species.
The response time, detection limit and detection confidence are all set at their default values.

impact:
erd file: [Net3/Net3_EColi_TSB.erd]
metric: [MC]
tai file: null
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: EColi

configure:
output prefix: sim2Impact_ex3/Net3
debug: 0

Figure 4.5: The sim2Impact configuration file for example 3.

The example can be executed using the following command line:
wst sim2Impact sim2Impact_ex3.yml

27

Chapter 5

Sensor Placement

The sp subcommand optimizes the location of sensors in a water distribution network to minimize the
impact of potential contamination incidents. The sp subcommand has a rich interface that supports a
variety of optimization formulations, and it integrates a wide range of optimization solvers. The standard
sensor placement problem is to minimize the expected impact over an ensemble of incidents while limiting
the number of potential sensors. An impact file is used to define the ensemble of contamination incidents.
By default, sensors can be placed at any junction in the network, but the sp subcommand can easily specify
fixed locations and infeasible locations.

A flowchart representation of the sp subcommand is shown in Figure 5.1. The required input for the sp
subcommand is an impact file and sensor characteristics. The impact file could be created by the sim2Impact
subcommand, or through some non-WST impact calculation process. Multiple impact files can be used as
input to the sensor placement problem. The other required input is the sensor characteristics. These
characteristics are supplied through the sp WST configuration file as well as additional files that provide
details on the cost and failure rates of the sensors.

Sensor
Placement

Impact File

Sensor Locations

Sensor
Characteristics

Figure 5.1: Sensor placement flowchart.

5.1 Sensor Placement Formulations

Several sensor placement optimization formulations are available in the sp subcommand. These include:
expected-impact, robust optimization, minimum cost, multi-criteria and imperfect formulations.

5.1.1 Expected-Impact Formulation

The most widely studied sensor placement formulation for a contamination warning system (CWS) design
is to minimize the expected impact of an ensemble of contamination incidents given a fixed number of

28

sensors. This formulation has also become the standard formulation in the sp subcommand, because it can
be effectively used to select sensor placements in large water distribution networks.

A mixed-integer programming (MIP) formulation for expected-impact sensor placement is (eSP):

minimize
∑
a∈A

αa
∑
i∈La

daixai (5.1)

subject to
∑
i∈La

xai = 1 ∀a ∈ A (5.2)

xai ≤ si ∀a ∈ A, i ∈ La (5.3)∑
i∈L

cisi ≤ p (5.4)

si ∈ {0, 1} ∀i ∈ L (5.5)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.6)

This MIP minimizes the expected impact of a set of contamination incidents defined by A. For each in-
cident a ∈ A, αa is the weight of incident a, which is typically a probability. This formulation integrates
contamination impact calculations, which are reported at a set of locations from the full set, denoted L,
where a location refers to a network node. For each incident a, La ⊆ L is the set of locations that can be
contaminated by a. Thus, a sensor at a location i ∈ La can detect contamination from incident a at the time
contamination first arrives at location i. Each incident is witnessed by the first sensor to see it. For each
incident a ∈ A and location i ∈ La, dai defines the impact of the contamination incident a if it is witnessed
by location i. This impact metric assumes that as soon as a sensor witnesses contamination, then any further
contamination impacts are mitigated (perhaps after a suitable delay that accounts for the response time of
the water utility). The si variables indicate where sensors are placed in the network; ci is the cost of placing
a sensor at location i, and p is the budget.

The xai variables indicate whether incident a is witnessed by a sensor at location i. A given set of sensors
might not be able to witness all contamination incidents. To account for this, L contains a dummy location,
q. This dummy location is in all sets La. If the dummy location witnesses an incident, it generally means
that no real sensor can detect that incident. The impact for this location is the impact of the contamination
incident after the entire contaminant transport simulation has finished, which estimates the impact that
would occur without an online sensor network. The impact of a dummy detection is greater than all other
impacts for each incident, so the witness variable xai for the dummy will only be selected if no sensors have
been placed that can detect this incident with smaller impact.

Berry et al. (2006) describe eSP, and they note that this formulation is identical to the well-known p-median
facility location problem (Mirchandani and Francis, 1990) when ci = 1. In the p-median problem, p facilities
(e.g., central warehouses) are to be located on m potential sites such that the sum of distances dai between
each of n customers (e.g., retail outlets) and the nearest facility i is minimized. In comparing eSP and
p-median problems, there is equivalence between (1) sensors and facilities, (2) contamination incidents and
customers and (3) contamination impacts and distances. While eSP allows placement of at most p sensors,
p-median formulations generally enforce placement of all p facilities; in practice, the distinction is irrelevant
unless p approaches the number of possible locations.

5.1.2 Robust Formulations

The eSP model described in Section 5.1.1 can be viewed as optimizing one particular statistic of the distri-
bution of impacts defined by the contaminant transport simulations. However, other statistics might provide
more robust solutions, that are less sensitive to changes in this distribution (Watson et al., 2006). Consider

29

the following generalization of eSP:

minimize Impactf (α, d, x) (5.7)

subject to
∑
i∈La

xai = 1 ∀a ∈ A (5.8)

xai ≤ si ∀a ∈ A, i ∈ La (5.9)∑
i∈L

cisi ≤ p (5.10)

si ∈ {0, 1} ∀i ∈ L (5.11)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.12)

The function Impactf (α, d, x) computes a statistic of the impact distribution. The following functions are
supported in WST (see Watson et al. (2006) for further discussion of these statistics):

• Mean: This is the statistic used in eSP.

• VaR: Value-at-Risk (VaR) is a percentile-based metric. Given a confidence level β ∈ (0, 1), the VaR
is the value of the distribution at the 1 − β percentile (Topaloglou et al., 2002). The value of VaR
is less than the TCE value (see below). Mathematically, suppose a random variable W describes the
distribution of possible impacts. Then

VaR(W,β) = min{w | Pr[W ≤ w] ≥ β} (5.13)

Note that the distribution W changes with each sensor placement. Further, VaR can be computed
using the α, d and x values.

• TCE: The Tail-Conditioned Expectation (TCE) is a related metric that measures the conditional
expectation of impact exceeding VaR at a given confidence level. Given a confidence level 1 − β,
TCE is the expectation of the worst impacts with probability β. This value is between VaR and the
worst-case value. Mathematically, then

TCE(β) = E [W |W ≥ VaR(β)] (5.14)

• CVar: The Conditional Value-at-Risk (CVaR) is a linearization of TCE investigated by Rockafellar
and Uryasev (2002). CVaR approximates TCE with a continuous, piecewise-linear function of β, which
enables the use of CVaR in a MIP model.

• Worst: The worst impact value can be easily computed, since a finite number of contamination
incidents are simulated. However, this statistic is sensitive to changes in the number of contamination
incidents that are simulated; adding additional contamination incidents could significantly impact this
statistic.

WST includes robust MIP reformulations of eSP for the the worst and CVar statistics. The reformulation

30

to minimize the worst contamination impact is (wSP):

minimize w (5.15)

subject to αa
∑
i∈La

daixai ≤ w ∀a ∈ A (5.16)

∑
i∈La

xai = 1 ∀a ∈ A (5.17)

xai ≤ si ∀a ∈ A, i ∈ La (5.18)∑
i∈L

cisi ≤ p (5.19)

si ∈ {0, 1} ∀i ∈ L (5.20)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.21)

This is a standard formulation for the p-center problem (Daskin, 1995; Elloumi et al., 2004).

Similarly, the reformulation to minimize CVaR is (cvarSP):

minimize v + 1
β

∑
a∈A

αaya (5.22)

subject to ya ≥
∑
i∈La

daixai − v ∀a ∈ A (5.23)

yq ≥ 0 ∀a ∈ A (5.24)∑
i∈La

xai = 1 ∀a ∈ A (5.25)

xai ≤ si ∀a ∈ A, i ∈ La (5.26)∑
i∈L

cisi ≤ p (5.27)

si ∈ {0, 1} ∀i ∈ L (5.28)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.29)

Note that these formulations share a core set of constraints and variables with eSP. The difference in these
models is how the objective is expressed.

5.1.3 Side-Constrained Formulation

Another natural generalization of eSP is to consider the addition of side constraints that represent bounds
on alternate objectives or statistics. For example, consider a simple extension of eSP that includes a single

31

side-constraint (scSP):

minimize
∑
a∈A

αa
∑
i∈La

daixai (5.30)

subject to
∑
i∈La

xai = 1 ∀a ∈ A (5.31)

xai ≤ si ∀a ∈ A, i ∈ La (5.32)∑
i∈L

cisi ≤ p (5.33)

si ∈ {0, 1} ∀i ∈ L (5.34)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.35)∑
a∈A

αa
∑
i∈La

d̂aixai ≤ G (5.36)

The last constraint in this formulation bounds the value of an impact statistic d̂ai. Note that this statistic
could easily be used as the objective for (eSP). This can be viewed as a goal constraint. Iteratively solving
scSP for different goals, G, provides an assessment of the trade-off between the impact statistics in the
objective and this constraint. Hence, the scSP formulation provides a mechanism for analyzing trade-offs
between different objectives.

WST provides general support for side-constraints beyond what is represented in scSP, since multiple side-
constraints can be specified. Additionally, robust statistics can be specified. For example, WST can express
sensor placement formulations where the mean impact is minimized while the worst-case impact is con-
strained.

5.1.4 Min-Cost Formulation

The eSP model described in Section 5.1.1 minimizes expected contamination impact subject to a cost con-
straint on the number of sensors that are installed. A complementary sensor placement formulation is to
minimize the cost of installing sensors while constraining the contamination impact to be below a specified
threshold, u.

For example, eSP can be reformulated to minimize cost (mcSP):

minimize
∑
i∈L

cisi (5.37)

subject to
∑
i∈La

xai = 1 ∀a ∈ A (5.38)

xai ≤ si ∀a ∈ A, i ∈ La (5.39)∑
a∈A

αa
∑
i∈La

daixai ≤ u (5.40)

si ∈ {0, 1} ∀i ∈ L (5.41)
0 ≤ xai ≤ 1 ∀a ∈ A, i ∈ La (5.42)

5.2 Sensor Placement Solvers

The sp subcommand performs optimization using a solver specified in the configuration file. All of the
solvers supported by the sp subcommand are practical for small-sized water distribution networks, and the
heuristic solvers can find sensor placements for very large networks.

32

The sp subcommand interfaces with a variety of external solvers that can be used to perform sensor place-
ment. Several different MIP solvers can be used to find a globally optimal solution for the eSP MIP formu-
lation. However, this might be a computationally expensive process (especially for large problems), and the
size of the MIP formulation can become prohibitively large in some cases. A variety of public-domain and
commercial solvers can be used by the sp subcommand, including GLPK, CBC, PICO, CPLEX, GUROBI
and XPRESS.

A greedy randomized adaptive sampling process (GRASP) heuristic performs sensor placement optimization
without explicitly creating a MIP formulation. Thus, this solver uses much less memory, and it usually
runs very quickly. Although the GRASP heuristic does not guarantee that a globally optimal solution
is found, it has proven effective at finding optimal solutions to a variety of large-scale applications. Two
different implementations of the GRASP solvers can be used: an ATT commercial solver (att_grasp) or an
open-source implementation of this solver (snl_grasp).

The Lagrangian heuristic uses the structure of the p-median MIP formulation (eSP) to find near-optimal
solutions while computing a lower bound on the best possible solution.

5.3 sp Subcommand

The sp subcommand is executed with the following command:
wst sp <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst sp --help

Two other options can be used to print help information. The –-help-problems option prints a table of
the different types of optimization problems that can be solved with the sp subcommand. For example, the
following is a description of the standard problem solved by the sp subcommand:

default, p-median, average-case perfect-sensor
--
mean obj
0 constraints
perfect
single obj
1 stage
exact

The first row lists the different names that can be used to specify this problem type. The six rows following
the dashed lines are different characteristics of this problem: the objective is a mean impact value, the
problem has no side-constraints, the sensors detect perfectly (i.e., without errors), a single objective is used,
this is a single-stage problem and an exact solution is desired. These six characteristics are used by the sp
subcommand to verify the suitability of solvers that are specified for optimization.

The –-help-solvers option prints a table of the different solvers that can be applied to perform optimiza-
tion. For example, the following is a description of the solvers that can be used to optimize average-case
perfect-sensor problems (which is the default):

Problem Type Solver Modeling Language
==
average-case perfect-sensor *att_grasp none
average-case perfect-sensor *cbc pyomo
average-case perfect-sensor *cplex pyomo
average-case perfect-sensor *glpk pyomo
average-case perfect-sensor gurobi pyomo
average-case perfect-sensor *lagrangian none

33

average-case perfect-sensor pico ampl
average-case perfect-sensor pico pyomo
average-case perfect-sensor *snl_grasp none
average-case perfect-sensor xpress pyomo

Solvers highlighted with an asterisk are available in the current installation of WST. The modeling language
indicates whether AMPL (Fourer et al., 2002), Pyomo (Hart et al., 2012) or neither is used to solve sensor
placement optimization problem.

5.3.1 Configuration File

The sp subcommand generates a template configuration file using the following command line:
wst sp --template <configfile>

The template configuration file for the sp subcommand is shown in Figure 5.2. Brief descriptions of the
options are included in the template after the # character.

5.3.2 Configuration Options

Full descriptions of the WST configuration options used by the sp subcommand are listed below.

impact data
name

The name of the impact block that is used in the objective or constraint block.
Required input.

impact file
The name of the impact file that is created by sim2Impact and contains the detection time and
the total impact given a sensor at that node is the first to detect contamination from that scenario.
The impact file format is documented in File Formats Section 12.4.
Required input.

nodemap file
The name of the nodemap file that is created by sim2Impact and maps sensor placement ids to
the network node labels. The nodemap file format is documented in File Formats Section 12.8.
Required input.

weight file
The name of the weight file that specifies the weights for contamination incidents. This file
supports the optimization of weighted impact metrics. The weight file format is documented in
File Formats Section 12.14.
Optional input, by default, incidents are optimized with weight 1.

directory
The name of the directory where the impact file, nodemap file and weight file are located.
Optional input, default = working directory.

cost
name

The name of the cost block that is used in the objective or constraint block.
Optional input.

cost file
The name of the cost file that contains the costs for the installation of sensors throughout the dis-
tribution network. This file contains EPANET ID/cost pairs. The cost file format is documented
in File Formats Section 12.2.

34

Optional input.
directory

The name of the directory where the cost file is located.
Optional input, default = working directory.

objective
name

The name of the objective block that is used in sensor placement.
Required input.

goal
The objective of the optimization process that defines what is going to minimized. The options
are the name of the impact block, the name of the cost block, the number of sensors (NS) or the
number of failed detections (NFD).
Required input.

statistic
The objective statistic. The options are MEAN, MEDIAN, VAR, TCE, CVAR, TOTAL or
WORST. For example, MEAN will minimize the mean impacts over all of the contamination
scenarios, while WORST will only minimize the worst impacts from the ensemble of contamina-
tion scenarios.
Required input.

gamma
The value of gamma that specifies the fraction of the distribution of impacts that will be used to
compute the VAR, CVAR and TCE statistics. Gamma is assumed to be in the interval(0,1]. It
can be interpreted as specifying the 100(*)gamma percent of the worst contamination incidents
that are used for these calculations.
Required input for VAR or CVAR objective statistics, default = 0.05.

constraint
name

The name of the constraint block that is used in sensor placement.
Required input.

goal
The constraint goal. The options are the name of the impact block name, the name of the cost
block, the number of sensors (NS) or the number of failed detections (NFD).
Required input.

statistic
The constraint statistic. The options are MEAN, MEDIAN, VAR, TCE, CVAR, TOTAL or
WORST.
Required input.

gamma
The value of gamma that specifies the fraction of the distribution of impacts that will be used to
compute the VAR, CVAR and TCE statistics. Gamma is assumed to be in the interval(0,1]. It
can be interpreted as specifying the 100(*)gamma percent of the worst contamination incidents
that are used for these calculations.
Required input for VAR or CVAR objective statistics, default = 0.05.

bound
The upper bound on the constraint.
Optional input.

35

scenario
aggregate

name
The name of the aggregation block that is used in sensor placement.
Optional input.

type
The type of aggregation used to reduce the size of the sensor placement problem. The options
are THRESHOLD, PERCENT or RATIO.
THRESHOLD is used to aggregate similar impacts by specifying a goal and a value. This is
used to reduce the total size of the sensor placement formulation (for large problems). Solutions
generated with non-zero thresholds are not guaranteed to be globally optimal.
PERCENT is an alternative method to compute the aggregation threshold in which the value (of
the goal-value pair) is a double between 0.0 and 1.0. Over all contamination incidents, compute
the maximum difference, d, between the impact of the contamination incident if it is not detected
and the impact if it is detected at the earliest possible feasible location and set the aggregation
threshold to d (*) aggregation percent. If both THRESHOLD and PERCENT are set to valid
values, then PERCENT takes priority.
RATIO is also specified with a goal-value pair in which value is a double between 0.0 and 1.0.
Optional input.

goal
The aggregation goal for the aggregation type.
Optional input.

value
The aggregation value for the aggregation type. If the aggregation type is PERCENT or RATIO,
then this value is a double between 0.0 and 1.0.
Optional input.

conserve memory
The maximum number of impact files that should be read into memory at any one time. This
option allows impact files to be processed in a memory conserving mode if location aggregation
is chosen and the original impact files are very large. For example, a conserve memory value of
10000 requests that while original impact files are being processed into smaller aggregated files,
no more than 10000 impacts should be read into memory at any one time.
Optional input, default = zero to turn off this option.

distinguish detection
A goal for which aggregation should not allow incidents to become trivial. If the aggregation
threshold is so large that all locations, including the dummy, would form a single superlocation,
this forces the dummy to be in a superlocation by itself. Thus, the sensor placement will distin-
guish between detecting and not detecting. This option can be listed multiple times, to specify
multiple goals.
Optional input, default = 0.

disable aggregation
Disable aggregation for this goal, even at value zero, which would incur no error. Each witness
incident will be in a separate superlocation. This option can be listed multiple times, to specify
multiple goals. ALL can be used to specify all goals.
Optional input, default = 0.

imperfect

36

name
The name of the imperfect block that is used in sensor placement.
Optional input.

sensor class file
The name of the imperfect sensor class file that defines the detection probabilities for all sensor
categories. It is used with the imperfect-sensor model and must be specified in conjunction with a
imperfect junction class file. The imperfect sensor class file format is documented in File Formats
Section 12.6.
Optional input.

junction class file
The name of the imperfect junction class file that defines a sensor category for each network node.
It is used with the imperfect-sensor model and must be specified in conjunction with a imperfect
sensor class file. The imperfect junction class file format is documented in File Formats Section
12.5.
Optional input.

directory
The name of the directory where the imperfect junction class and sensor class files are located.
Optional input.

sensor placement
type

The sensor placement problem type. The command wst sp –help-problems provides a list of
problem types for sensor placement. For example, average-case perfect-sensor is the standard
problem type for sensor placement, since it uses the mean statistic, zero constraints, single objec-
tive and perfect sensors.
Required option, default = average-case perfect-sensor.

modeling language
The modeling language to generate the sensor placement optimization problem. The options are
NONE, PYOMO or AMPL.
Required input, default = NONE.

objective
The name of the objective block used in sensor placement.
Required input.

constraint
The name of the constraint block used in sensor placement.
Required input.

imperfect
The name of the imperfect block used in sensor placement.
Optional input.

aggregate
The name of the aggregate block used in sensor placement.
Optional input.

compute bound
A flag to indicate if bounds should be computed on the sensor placement solution. The options
are true or false.
Optional input, default = false.

presolve

37

A flag to indicate if the sensor placement problem should be presolved. The options are true or
false.
Optional input, default = true.

compute greedy ranking
A flag to indicate if a greedy ranking of the sensor locations should be calculated. The options
are true or false.
Optional input, default = false.

location
feasible nodes

A list that defines nodes that can be considered for the sensor placement problem. The
options are: (1) ALL, which specifies all nodes as feasible sensor locations; (2) NZD, which
specifies all non-zero demand nodes as feasible sensor locations; (3) NONE, which specifies
no nodes as feasible sensor locations; (4) a list of EPANET node IDs, which identifies specific
nodes as feasible sensor locations; or (5) a filename, which is a space or comma separated file
containing a list of specific nodes as feasible sensor locations.
Required input, default = ALL.

infeasible nodes
A list that defines nodes that cannot be considered for the sensor placement problem. The
options are: (1) ALL, which specifies all nodes as infeasible sensor locations; (2) NZD, which
specifies non-zero demand nodes as infeasible sensor locations; (3) NONE, which specifies no
nodes as infeasible sensor locations; (4) a list of EPANET node IDs, which identifies specific
nodes as infeasible sensor locations; or (5) a filename, which is a space or comma separated
file containing a list of specific nodes as infeasible sensor locations.
Optional input, default = NONE.

fixed nodes
A list that defines nodes that are already sensor locations. The options are: (1) ALL, which
specifies all nodes as fixed sensor locations; (2) NZD, which specifies non-zero demand nodes
as fixed sensor locations; (3) NONE, which specifies no nodes as fixed sensor locations; (4) a
list of EPANET node IDs, which identifies specific nodes as fixed sensor locations; or (5) a
filename, which is a space or comma separated file containing a list of specific nodes as fixed
sensor locations.
Optional input, default = NONE.

unfixed nodes
A list that defines nodes that are unfixed sensor locations. The options are: (1) ALL, which
specifies all nodes as unfixed sensor locations; (2) NZD, which specifies non-zero demand
nodes as unfixed sensor locations; (3) NONE, which specifies no nodes as unfixed sensor
locations; (4) a list of EPANET node IDs, which identifies specific nodes as unfixed sensor
locations; or (5) a filename, which is a space or comma separated file containing a list of
specific nodes as unfixed sensor locations.
Optional input, default = NONE.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.
Required input.

options

38

A list of options associated with a specific solver type.
Optional input.

logfile
The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes
A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

5.3.3 Subcommand Output

The sp subcommand creates several output files. The YAML file called <output prefix>sp_output.yml
contains the sensor locations, final impact metric, the run date and CPU time. For some solvers, the lower and
upper bound on the objective is reported. The log file called <output prefix>sp_output.log contains basic
debugging information. A visualization YAML configuration file called <output prefix>sp_output_vis.yml
is also created and can be used to generate network graphics of the sensor placement solution using the
visualization subcommand. The correct EPANET INP file must be included in the visualization YAML
configuration file for the graphic to display properly.

The sp subcommand also outputs information a file named <output prefix>_evalsensor.out That file includes
the following data:

• Objective: The impact metric value achieved with the sensor network design.

• Lower bound: The lower bound on the impact metric with the sensor network design.

• Upper bound: The upper bound on the impact metric with the sensor network design.

• Solutions: The internal node indices used by sp for the sensor network design.

• Locations: The EPANET junction labels for the sensor placement locations.

• Sensor placement ID: An integer ID used to distinguish the sensor network design.

39

• Number of sensors: The number of sensors in the sensor network design.

• Total cost: The cost of the sensor network design, which could be non-zero if cost data is provided.

• Sensor node IDs: The internal node indices used by sp for the sensor network design. The same as
Solutions.

• Sensor junctions: The EPANET junction labels for the sensor placement locations. The same as
Locations.

• Impact file: The name of the impact file used in the sensor network design.

• Number of events: The number of contamination scenarios that were simulated.

The performance of the sensor network design is summarized for each impact data file specified in the
configuration file. The impact statistics included are:

• Min impact: The minimum impact over all contamination incidents simulated. Assuming that a
sensor protects the node at which it is placed, this statistic will typically be zero.

• Mean impact: The mean (or average) impact over all contamination incidents simulated.

• Lower quartile impact: 25% of the contamination incidents, weighted by their likelihood, have an
impact value less than this quartile.

• Median impact: 50% of the contamination incidents simulated, weighted by their likelihood, have
an impact value less than this quartile.

• Upper quartile impact: 75% of the contamination incidents simulated, weighted by their likelihood,
have an impact value less than this quartile.

• Value at Risk (VaR): VaR is the minimum value for which 100 ∗ (1 − β)% of the contamination
incidents simulated have a smaller impact, in which β is a user-defined percentage between 0.0 < β <
1.0.

• TCE: The tailed-conditioned expectation (TCE) is the mean value of the impacts that are greater
than or equal to VaR.

• Worst impact: The worst impact over all contamination incidents simulated.

If the [compute greedy ranking] option is used, a greedy sensor placement is printed to <output pre-
fix>_evalsensor.out. The greedy ranking places sensors one-at-a-time at the locations in the optimal sensor
network design by consecutively minimizing the mean impact of placing each sensor. This analysis gives a
sense of the relative priorities for these sensors. The greedy ranking is listed in terms of the sensor node IDs
used by the sp subcommand and not the EPANET node IDs.

40

sp configuration template
impact data:

-
name: impact1 # Impact block name
impact file: Net3_mc.impact # Impact file name
nodemap file: Net3.nodemap # Nodemap file name
weight file: null # Weight file name
directory: null # Impact data directory

cost:
-

name: null # Cost block name
cost file: null # Cost file name
directory: null # Cost data directory

objective:
-

name: obj1 # Objective block name
goal: impact1 # Optimization objective
statistic: MEAN # Objective statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR

constraint:
-

name: const1 # Constraint block name
goal: NS # Constraint goal
statistic: TOTAL # Constraint statistic
gamma: 0.05 # Gamma, required with statistics VAR or CVAR
bound: 5 # Constraint upper bound
scenario: []

aggregate:
-

name: null # Aggregation block name
type: null # Aggregation type: THRESHOLD, PERCENT or RATIO
goal: null # Aggregation goal
value: null # Aggregation value
conserve memory: 0 # Aggregation conserve memory
distinguish detection: 0 # Detection goal
disable aggregation: [0] # Aggregation disable aggregation

imperfect:
-

name: null # Imperfect block name
sensor class file: null # Imperfect sensor class file
junction class file: null # Imperfect junction class file
directory: null # Imperfect file directory

sensor placement:
-

type: default # Sensor placement problem type
modeling language: NONE # Modeling language: NONE, PYOMO or AMPL, default = NONE
objective: obj1 # Objective block name used in sensor placement
constraint: [const1] # Name of constraint block(s) used in sensor placement
imperfect: null # Imperfect block name used in sensor placement
aggregate: null # Aggregate block name used in sensor placement
compute bound: false # Compute bounds: true or false, default = false
presolve: true # Presolve problem: true or false, default = true
compute greedy ranking: false # Compute greedy ranking of sensor locations, default =

false
location:

-
feasible nodes: ALL # Feasible sensor nodes
infeasible nodes: NONE # Infeasible sensor nodes
fixed nodes: NONE # Fixed sensor nodes
unfixed nodes: NONE # Unfixed sensor nodes

solver:
type: snl_grasp # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 5.2: The sp configuration template file.

41

5.4 Sensor Placement Examples

The following examples illustrate common ways that the sp subcommand can be used. Additional examples
using the sp subcommand are provided in Chapter 11.

5.4.1 Example 1: Solving eSP with a MIP Solver

The first example uses the configuration file, sp_ex1.yml, shown in Figure 5.3. It specifies the impact file
as Net3_ec.impact created by the sim2Impact subcommand using the extent of contamination (EC) impact
metric and EPANET Example Network 3. The objective is to minimize the mean EC over all contamination
incidents simulated while limiting the number of sensors (NS) to no more than five. The solver is the GLPK
mixed-integer programming (MIP) solver, which finds globally optimal sensor placements. In addition, the
greedy ranking option is used.

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 3.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex1/Net3
debug: 0

Figure 5.3: The sp configuration file for example 1.

The sp subcommand is executed using the following command line:
wst sp sp_ex1.yml

The sp subcommand for example 1 generates the YAML output file, Net3sp_output.yml, which summarizes
the sensor placement results (see Figure 5.4). The sensor network design places sensors at nodes 113, 121,
141, 163 and 209 to achieve an objective value of approximately 8655 of pipe feet contaminated.

The Net3_evalsensor.out file for the first sp subcommand example is shown in Figure 5.5. It displays the
same sensor network design and impact value as in the YAML output file. It also includes the greedy
ranking of the sensor network design, in which a sensor at node 163 would provide the greatest reduction in
the impact followed by sensors at nodes 209, 113, 141 and 121.

42

sp output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 7.036 # CPU time (sec)
directory: C:/WST-1.2/examples/sp_ex1
log file: Net3sp_output.log # Log file

sensor placement:
nodes: [[’113’, ’121’, ’141’, ’163’, ’209’]] # List of sensor nodes
objective: [’8655.81’] # Objective value
lower bound: 8655.806356 # Lower bound
upper bound: 8655.806356 # Upper bound
greedy ranking: Net3_evalsensor.out # Upper bound
stage 2: [] # Upper bound

Figure 5.4: The sp YAML output file for example 1.

--
Sensor placement id: 28330
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Figure 5.5: The evalsensor output for sp example 1.

43

5.4.2 Example 2: Evaluating Solutions to eSP with Multiple Impact Files

The sp subcommand can also be configured to evaluate a sensor network design using impact data not used
for optimization. The second example uses the configuration file, sp_ex2.yml, shown in Figure 5.6. Several
impact files, Net3_ec.impact and Net3_mc.impact, are defined in the impact block of the WST configuration
file. The objective of the sensor placement optimization is to minimize the mean EC impact metric. The
optimal sensor network design is then evaluated against the mass consumed (MC) impact metric.

impact data:
- name: ec

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

- name: mc
impact file: Net3_mc.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: ec
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex2/Net3
debug: 0

Figure 5.6: The sp configuration file for example 2.

The sp subcommand is executed using the following command line:
wst sp sp_ex2.yml

All of the impact files specified in the configuration file are used when evaluating the sensor placement, and
a greedy sensor placement is generated for each (see Figure 5.7). The sensor network design optimized for
EC has a mean MC impact of 56320. The greedy ranking of the sensors is different for the two different
impact metrics. A sensor at node 209 would be the first sensor placed for the MC impact metric compared
to a sensor at node 163 for the EC impact metric.

44

--
Sensor placement id: 58293
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000

Impact File: Net3/Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 56320.3850
Lower quartile impact: 307.6690
Median impact: 4200.0900
Upper quartile impact: 137021.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 143999.0000
Max impact: 143999.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064
--
Greedy ordering of sensors: Net3/Net3_mc.impact
--
-1 136858.7347
65 71509.1322
28 56685.0096
16 56409.8878
38 56329.1362
21 56320.3850

Figure 5.7: The evalsensor output for sp example 2.

45

5.4.3 Example 3: Solving eSP with a GRASP Solver

The third example illustrates the use of a heuristic solver for sensor placement. A greedy randomized
adaptive sampling process (GRASP) heuristic iteratively applies local search to adaptively sample locations.
Two GRASP heuristics are provided in WST. The AT&T GRASP solver is based on the AT&T popstar
software, and it can be used for research purposes. The SNL GRASP solver is a new implementation of the
GRASP algorithm in popstar. Example 3 uses the configuration file, sp_ex3.yml, which is shown in Figure
5.8. The sensor placement parameters are the same as in Example 5.4.1; the only difference is that the SNL
GRASP solver is used instead of GLPK.

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: snl_grasp
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex3/Net3
debug: 0

Figure 5.8: The sp configuration file for example 3.

The sp subcommand is executed using the following command line:
wst sp sp_ex3.yml

The Net3_evalsensor.out file for example 3 is shown in Figure 5.9. The SNL GRASP heuristic solver finds
the same solution found by the GLPK solver in example 1. In addition, the solver found another solution
during the search with the same performance. Since GRASP is a heuristic solver, it is not guaranteed to find
sensor placements with the globally optimal value. However, GRASP has proven capable of finding optimal
or near-optimal solutions even for large sensor placement problems. While the MIP solver in example 1
provided an upper and lower bound on the value of the solution, the GRASP solver does not generate these
bounds since it is a heuristic.

GRASP is a heuristic search that is partly dependent on a random number generator. Consequently, users
should not expect the solver to give identical results when run on different machines or operating systems.
Thus, the solution shown in Figure 5.9 might not be the solution on everyone’s machine.

46

--
Sensor placement id: 25871
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 21 28 38 65
Sensor junctions: 113 121 141 163 209

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8655.8064
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12444.0000
Value at Risk (VaR) (5%): 27269.0000
TCE (5%): 29853.9750
Max impact: 36740.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
38 23998.0814
65 16138.4225
16 11534.0903
28 9821.7386
21 8655.8064

Figure 5.9: The evalsensor output for sp example 3.

5.4.4 Example 4: Solving wSP with a MIP Solver

The subsequent examples illustrate the use of WST to formulate and solve more complex sensor placement
formulations. In most cases, these formulations are significantly harder to solve than eSP. MIP solvers are
used in the following examples to ensure consistency in the solution, but the time required to solve these
problems is non-trivial.

The fourth example uses the configuration file, sp_ex4.yml, shown in Figure 5.10. The objective is to
minimize the worst-case expected contamination over all contamination incidents simulated while limiting
the number of sensors to no more than five. The solver is the CBC solver, which finds globally optimal
sensor placements. In addition, the greedy ranking option is used.

The sp subcommand is executed using the following command line:
wst sp sp_ex4.yml

The Net3_evalsensor.out file for this example is shown in Figure 5.11. By comparison with example 1, this
solution has a lower maximum impact for EC and a higher mean impact for EC. This reflects the difference
in the objectives of these two formulations.

47

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: WORST

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: worst-case perfect-sensor
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex4/Net3
debug: 0

Figure 5.10: The sp configuration file for example 4.

--
Sensor placement id: 26351
Number of sensors: 5
Total cost: 0
Sensor node IDs: 15 19 24 43 65
Sensor junctions: 111 119 127 171 209

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 9471.0712
Lower quartile impact: 0.0000
Median impact: 9694.0000
Upper quartile impact: 14120.0000
Value at Risk (VaR) (5%): 26075.0000
TCE (5%): 27333.8000
Max impact: 28290.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
43 23415.3297
65 16902.1568
15 13225.1136
19 10239.7407
24 9471.0712

Figure 5.11: The evalsensor output for sp example 4.

48

5.4.5 Example 5: Solving cvarSP with a MIP Solver

Example 5 uses the configuration file, sp_ex5.yml, shown in Figure 5.12. The objective is to minimize the
conditional value-at-risk (CVaR) over all contamination incidents simulated while limiting the number of
sensors to no more than five. The parameter γ = 0.05 specifies the weight of the tail that is used to measure
CVaR (CVaR approximates the mean impact of the 5% worst scenarios). Hence, minimizing CVaR is similar
to minimizing the worst-case; the difference is that minimizing CVaR reduces the impact of all of the worst
5% of the scenarios. The GLPK solver and the greedy ranking option are used.

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: CVAR
gamma: 0.05

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5

sensor placement:
type: robust-cvar perfect-sensor
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex5/Net3
debug: 0

Figure 5.12: The sp configuration file for example 5.

The sp subcommand is executed using the following command line:
wst sp sp_ex5.yml

The Net3_evalsensor.out file for this example is shown in Figure 5.13. By comparison with example 1, this
solution has a lower TCE for EC and a higher mean impact for EC. By comparison with example 4, this
solution has the same maximum impact for EC and a lower TCE impact for EC. Both of these comparisons
reflects the difference in the objectives of these formulations.

49

--
Sensor placement id: 35486
Number of sensors: 5
Total cost: 0
Sensor node IDs: 15 19 25 66 87
Sensor junctions: 111 119 129 211 265

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 9772.7708
Lower quartile impact: 1650.0000
Median impact: 9694.0000
Upper quartile impact: 14120.0000
Value at Risk (VaR) (5%): 24199.0000
TCE (5%): 26366.8750
Max impact: 28290.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
87 22431.5335
66 15738.1076
15 12523.3470
19 10228.6606
25 9772.7708

Figure 5.13: The evalsensor output for sp example 5.

5.4.6 Example 6: Solving scSP with a MIP Solver

Example 6 uses the configuration file, sp_ex6.yml, shown in Figure 5.14. The objective is to minimize the
mean contamination impact for EC over all contamination incidents simulated while limiting (1) the number
of sensors to no more than five and (2) the mean contamination impact for MC to no more than 50000.0.
The GLPK solver and the greedy ranking option are used.

The sp subcommand is executed using the following command line:
wst sp sp_ex6.yml

The Net3_evalsensor.out file for this example is shown in Figure 5.15. By comparison with example 1, this
solution has a higher mean impact for EC and a lower mean impact for MC. This comparison reflects how
adding constraints to the formulation in example 1 leads to a worse solution for the objective while satisfying
a side constraint.

50

impact data:
- name: ec

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

- name: mc
impact file: Net3_mc.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: ec
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5

- name: const2
goal: mc
statistic: MEAN
bound: 50000.0

sensor placement:
type: side-constrained
objective: obj1
constraint:

- const1
- const2

presolve: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex6/Net3
debug: 0

Figure 5.14: The sp configuration file for example 6.

51

--
Sensor placement id: 35941
Number of sensors: 5
Total cost: 0
Sensor node IDs: 16 28 38 63 74
Sensor junctions: 113 141 163 207 237

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 8763.7513
Lower quartile impact: 0.0000
Median impact: 7110.0000
Upper quartile impact: 12315.9000
Value at Risk (VaR) (5%): 27754.8000
TCE (5%): 34161.9833
Max impact: 41105.0000

Impact File: Net3/Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 46060.0860
Lower quartile impact: 192.2400
Median impact: 2039.0300
Upper quartile impact: 124175.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 143999.0000
Max impact: 143999.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
63 23283.0614
38 16121.9182
16 11657.3742
28 9945.0225
74 8763.7513
--
Greedy ordering of sensors: Net3/Net3_mc.impact
--
-1 136858.7347
74 61640.7514
28 46758.6920
63 46281.6318
16 46085.6101
38 46060.0860

Figure 5.15: The evalsensor output for sp example 6.

52

5.4.7 Example 7: Solving mcSP with a MIP Solver

Example 7 uses the configuration file, sp_ex7.yml, shown in Figure 5.16. The objective is to minimize the
number of sensors while limiting the mean contamination impact for EC over all contamination incidents to
no more than 5000.0. The CBC solver and the greedy ranking option are used.

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: NS
statistic: TOTAL

constraint:
- name: const1

goal: impact1
statistic: MEAN
bound: 5000.0

sensor placement:
type: min-sensors
objective: obj1
constraint: const1
presolve: True
compute greedy ranking: True

solver:
type: cbc
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_ex7/Net3
debug: 0

Figure 5.16: The sp configuration file for example 7.

The sp subcommand is executed using the following command line:
wst sp sp_ex7.yml

The Net3_evalsensor.out file for this example is shown in Figure 5.17. By comparison with example 1, this
solution uses 11 sensors to find a lower mean impact for EC. Both the mcSP and eSP formulations can
be used to explore the trade-off between number of sensors and contamination impact. However, the eSP
formulation is much easier to solve, especially for large-scale sensor placement problems.

53

--
Sensor placement id: 48106
Number of sensors: 11
Total cost: 0
Sensor node IDs: 12 15 19 24 28 32 38 46 53 63 75
Sensor junctions: 105 111 119 127 141 149 163 179 191 207 239

Impact File: Net3/Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 4951.5051
Lower quartile impact: 0.0000
Median impact: 3695.0000
Upper quartile impact: 8990.0000
Value at Risk (VaR) (5%): 14385.0000
TCE (5%): 17523.3333
Max impact: 26215.0000
--
--
Greedy ordering of sensors: Net3/Net3_ec.impact
--
-1 47126.3322
63 23283.0614
19 15963.3284
15 12003.2335
38 10165.7572
28 9059.2106
75 7982.7953
46 7052.3008
12 6439.7797
53 5910.1746
32 5394.1153
24 4951.5051

Figure 5.17: The evalsensor output for sp example 7.

54

Chapter 6

Hydrant Flushing

A common operational approach that water utilities use to address water quality concerns is flushing, which
is the purging of water from the distribution network via a fire hydrant or blow-off port. Many utilities flush
water mains following maintenance work or in response to customer complaints. Flushing can remove the
sources of poor water quality (e.g., pipe corrosion, bio-film microorganisms), as well as loose or suspended
material that has accumulated in low-flow portions or dead-ends of the distribution system. It is a response
option that can be undertaken relatively quickly after an contamination incident, and it can be made more
efficient through the careful selection of where to implement flushing activities. This chapter describes the
flushing subcommand in WST that assists in the identification of effective hydrant locations to flush in
order to remove contaminated water and the valves to close in order to direct the contaminated water towards
the hydrants.

A flowchart representation of the flushing subcommand is shown in Figure 6.1. The flushing subcommand
employs an iterative process that combines contaminant transport, impact assessment and optimization. The
optimization process identifies a set of flushing activities that are simulated in the contaminant transport
process and evaluated based upon the impact assessment process. Since the flushing subcommand relies
on the tevasim and sim2Impact subcommands, their required input is also required for the flushing
subcommand. In addition, the sensor network design used to detect the contamination incident(s) and the
flushing characteristics are required inputs. The utility network model is defined by a EPANET INP file,
while the rest of the input can be specified in the flushing WST configuration file.

55

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

Consequences
Input

Impact File Flushing
Optimization

 Sensor
Placements

Flushing
Characteristics

Flushing
Locations

Figure 6.1: Flushing response simulation flowchart.

6.1 Flushing Formulation

The flushing problem formulation can be summarized as selecting a set of hydrant locations to flush and
valves to close that minimizes the average impact of all contamination incidents given a set of potential
hydrant locations to flush and valves to close. The mathematical formulation can be written as follows:

minimize 1
A

∑
a∈A

da,max (6.1)

subject to
∑
h∈H

yh ≤ Hmax (6.2)∑
v∈V

yv ≤ Vmax (6.3)

yh ∈ {0, 1} ∀h ∈ H (6.4)
yv ∈ {0, 1} ∀v ∈ V (6.5)

where A represents a set of contamination incidents, damax defines the maximum impact of the contamination
incident a, H represents the set of potential hydrant locations, yh is a binary variable which is 1 if node h
is selected as a flushing location, Hmax is the maximum number of hydrant locations, V represents the set
of potential valve locations, yv is a binary variable which is 1 if node v is selected as a valving location and
Vmax is the maximum number of valve locations. The maximum impact of a contamination incident, da,max,
is the total impact across the entire network at the end of the simulation assuming that the contaminant
was not detected by a sensor, and no interventions to reduce impacts were implemented. This value is found
in the -1 entry of the impact file.

For this problem, hydrants are assumed to be located at any user-defined nodes in the network. In addition,
valves are assumed to be located on any user-defined pipes in the network.

56

6.2 Flushing Solvers

The flushing problem is solved through an iterative optimization process which selects different sets of hydrant
and valve locations and evaluates their effectiveness in minimizing the impact of a set of contamination
incidents. Two optimization methods, an evolutionary algorithm and a network solver, are available in WST
to solve this problem. Each solver is explained in more detail in the following subsections.

6.2.1 Evolutionary Algorithm

The evolutionary algorithm (EA) included with DAKOTA, Coliny EA, is used in the optimization routine for
the flushing subcommand. Additional information on DAKOTA/Coliny solvers can be found at http://
dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html and in the DAKOTA user manual (Adams
et al., 2013).

To design an EA, the parameter space for the optimization problem is first encoded into a string of numbers.
This encoded representation of the problem is called a genetic string, where each element of the genetic
string represents one parameter. When the EA is used with the flushing subcommand, the parameter
space is defined by the number of flushing and valve closure locations. Each location is assigned a sequential
integer that represents a feasible location within the EPANET network. The final EA solution is translated
to represent EPANET node/pipe IDs.

The EA has several solver options that define how the EA evolves. These options can be set in the
[solver][options] sections of the flushing WST configuration file and are specific to the Coliny
EA solver. The EA evolves an initial genetic strings of size [population_size] that is set based on
[initialization_type] using the following steps:

1. Evaluation: Evaluate the solution for each genetic string. This involves function calls to the tevasim
and sim2Impact subcommands for each string to define the impact value.

2. Breeding: Select two members of the population based on fitness. The probability of selection is based
on [fitness_type].

3. Crossover: Crossover two members based on [crossover_type] and [crossover_rate].

4. Mutation: Mutate the two members based on [mutation_type] and [mutation_rate].

5. Steps 2-4 are repeated until the entire population has been changed.

6. Replacement: After a new population is created, the old population is replaced by the current popu-
lation while keeping the highest ranked string (elitist = 1 replacement option).

Steps 1-6 are repeated until [max_iterations] or [max_function_evaluations] criteria is met.

6.2.2 Network Solver

The network solver used in WST is a network-constrained, derivative-free local search optimization algorithm.
It is a discrete analog-to-pattern search. The allowable moves are to adjacent nodes (or pipes), rather than
moves in the continuous space. This approach provides local refinement of candidate solutions. The valid
moves include removing a node (or pipe) location and replacing it with one anywhere in the network. Two
forms of the network solver can be used: with and without initial starting points. The initial starting points
are node (or pipe) locations in the network in which the algorithm should begin its local search. If these
points are not supplied to the algorithm, then it reduces to a greedy placement algorithm. Convergence is
met when no remaining moves improve the solution.

57

http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html
http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html

6.3 flushing Subcommand

The flushing subcommand is executed using the following command line:
wst flushing <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst flushing --help

6.3.1 Configuration File

The flushing subcommand generates a template configuration file using the following command line:
wst flushing --template <configfile>

The flushing template configuration file is shown in Figure 6.2. Brief descriptions of the options are included
in the template after the # sign.

6.3.2 Configuration Options

Full descriptions of the WST configuration options used by the flushing subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

scenario
location

A list that describes the injection locations for the contamination scenarios. The options are:
(1) ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection
locations; (2) NZD, which denotes all nodes with non-zero demands as contamination injection
locations; or (3) an EPANET node ID, which identifies the node where contamination is intro-
duced. This allows easy specification of single or multiple contamination scenarios.
Required input unless a TSG or TSI file is specified.

type
The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOW-
PACED or SETPOINT. See the EPANET manual for additional information about source types
(Rossman, 2000).
Required input unless a TSG or TSI file is specified.

strength
The amount of contaminant injected into the network for the contamination scenarios. If the type
option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.
Required input unless a TSG or TSI file is specified.

species
The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but
only one is injected into the network. For cases where multiple contaminants are injected, a TSI
file is needed.

58

Required input for EPANET-MSX unless a TSG or TSI file is specified.
start time

The injection start time that defines when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents
an injection that starts at hour 1 of the simulation.
Required input unless a TSG or TSI file is specified.

end time
The injection end time that defines when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents
an injection that ends at hour 2 of the simulation.
Required input unless a TSG or TSI file is specified.

tsg file
The name of the TSG scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSG file will override the location, type, strength, species, start and end
times options specified in the WST configuration file. The TSG file format is documented in File
Formats Section 12.12.
Optional input.

tsi file
The name of the TSI scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSI file will override the TSG file, as well as the location, type, strength,
species, start and end time options specified in the WST configuration file. The TSI file format
is documented in File Formats Section 12.13.
Optional input.

msx file
The name of the EPANET-MSX multi-species file that defines the multi-species reactions to be
simulated using EPANET-MSX.
Required input for EPANET-MSX.

msx species
The name of the MSX species whose concentration profile will be saved by the EPANET-MSX
simulation and used for later calculations.
Required input for EPANET-MSX.

merlion
A flag (true or false) to indicate if the Merlion water quality simulator should be used. If an MSX
file is provided, EPANET-MSX will be used.
Required input, default = false.

impact
erd file

The name of the ERD database file that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD files (entered as a list) can be
combined to generate a single impact file. This can be used to combine simulation results from
different types of contaminants, in which the ERD files were generated from different TSG files.
Required input.

metric
The impact metric used to compute the impact file. Options include EC, MC, NFD, PD, PE, PK,
TD, TEC or VC. One impact file is created for each metric selected. These metrics are defined
in Section 4.1.
Required input.

59

tai file
The name of the TAI file that contains health impact information. The TAI file format is docu-
mented in File Formats Section 12.11.
Required input if a public health metric is used (PD, PE or PK).

response time
The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the
network and eliminate the consumption of contaminated water. As the response time increases,
the impact increases because the contaminant affects the network for a greater length of time.
Required input, default = 0 minutes.

detection limit
The concentration thresholds needed to perform detection with a sensor. There must be one
threshold for each ERD file. The units of these detection limits depend on the units of the
contaminant simulated for each ERD file (e.g., number of cells of a biological agent). The units
for detection limit are the same as for the MASS values that are specified in the TSG file.
Required input, default = 0.

detection confidence
The number of sensors that must detect an incident before the impacts are calculated.
Required input, default = 1 sensor.

msx species
The name of the MSX species tracked in the EPANET-MSX simulation. This parameter is
required for multi-species contamination incidents created by tevasim subcommand.
Required input for EPANET-MSX, default = first species listed in the ERD file

flushing
detection

The sensor network design used to detect contamination scenarios. The sensor locations are used
to compute a detection time for each contamination scenario. The options are a list of EPANET
node IDs or a file name which contains a list of EPANET node IDs.
Required input.

flush nodes
feasible nodes

A list that defines the nodes in the network that can be flushed. The options are: (1) ALL,
which specifies all nodes as feasible flushing locations; (2) NZD, which specifies all non-zero
demand nodes as feasible flushing locations; (3) NONE, which specifies no nodes as feasible
flushing locations; (4) a list of EPANET node IDs, which identifies specific nodes as feasible
flushing locations; or (5) a filename, which is a space or comma separated file containing a
list of specific nodes as feasible flushing locations.
Required input, default = ALL.

infeasible nodes
A list that defines the nodes in the network that cannot be flushed. The options are: (1)
ALL, which specifies all nodes as infeasible flushing locations; (2) NZD, which specifies all
non-zero demand nodes as infeasible flushing locations; (3) NONE, which specifies no nodes
as infeasible flushing locations; (4) a list of EPANET node IDs, which identifies specific nodes
as infeasible flushing locations; or (5) a filename, which is a space or comma separated file
containing a list of specific nodes as infeasible flushing locations.
Optional input, default = NONE.

max nodes

60

The maximum number of node locations that can be flushed simultaneously in the network.
The value is a nonnegative integer or a list of nonnegative integers. When a list is specified, the
optimization will be performed for each number in this list. For example, a value of 3 means
that a maximum of 3 node will be identified as flushing locations during the optimization
process.
Required input.

rate
The flushing rate for each node location to be flushed. A new demand pattern will be created
using this rate for the node. The value is a nonnegative integer. For example, a value of 800
means that an additional demand of 800 gpm is applied at a particular node. This rate is
applied to all flushing locations identified in the optimization process.
Required input.

response time
The time in minutes between the detection of a contamination incident and the start of
flushing. The value is a nonnegative integer. For example, a value of 120 represents a 120
minutes or a 2 hour delay between the time of detection and the start of flushing.
Required input.

duration
The length of time in minutes that flushing will be simulated at a particular node. The value
is a nonnegative integer. For example, a value of 240 means that flushing would be simulated
at a particular node for 4 hours. This duration is applied to all flushing locations identified
in the optimization process.
Required input.

close valves
feasible pipes

A list that defines the pipes in the network that can be closed. The options are: (1) ALL,
which specifies all pipes as feasible pipes to close; (2) DIAM min max, which specifies all
pipes with a specific diameter as feasible pipes to close; (3) NONE, which specifies no pipes
as feasible pipes to close; (4) a list of EPANET pipe IDs, which identifies specific pipes as
feasible pipes to close; or (5) a filename, which is a space or comma separated file containing
a list of specific pipes as feasible pipes to close.
Required input, default = ALL.

infeasible pipes
A list that defines the pipes in the network that cannot be closed. The options are: (1) ALL,
which specifies all pipes as infeasible pipes to close; (2) DIAM min max, which specifies all
pipes with a specific diameter as infeasible pipes to close; (3) NONE, which specifies no pipes
as infeasible pipes to close; (4) a list of EPANET pipe IDs, which identifies specific pipes as
infeasible pipes to close; or (5) a filename, which is a space or comma separated file containing
a list of specific pipes as infeasible pipes to close.
Optional input, default = NONE.

max pipes
The maximum number of pipes that can be closed simultaneously in the network. The value
must be a nonnegative integer or a list of nonnegative integers. When a list is specified, the
optimization will be performed for each number in this list. For example, a value of 2 means
that a maximum of 2 pipes to close will be identified during the optimization process.
Required input.

response time
The time in minutes between the detection of a contamination incident and closing pipes. The

61

value is a nonnegative integer. For example, a value of 120 would represent a 120 minutes or
a 2 hour delay between the time of detection and the start of pipe closures.
Required input.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.
Required input.

options
A list of options associated with a specific solver type.
Optional input.

logfile
The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes
A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

In addition to these standard WST configuration options, the solver block can define an evaluation option.
To evaluate the flushing response without solving the optimization problem, the solver type can be set as
EVALUATE. This option allows a set of flushing locations to be evaluated against a different contamination
scenario than which it was designed. The solver block can also define specific options for the optimization
solver. The solver options should be modified according to the specific optimization problem. If the options
are not set in the solver block, then the default values for these options are used. The two solvers available
in the flushing subcommand each have their own options. The EA solver has numerous options which can
be defined. Additional on the options available for the EA solver can found in the DAKOTA user manual
(Adams et al., 2013). An example of the EA solver options are listed below.

62

solver:
type: coliny_ea
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 30000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

The network solver has two options that can be set in the solver block of the configuration file.
solver:

type: coliny:StateMachineLS
options:

verbosity: 2
max_fcn_evaluations: 0

6.3.3 Subcommand Output

The flushing subcommand creates a YAML file called <output prefix>flushing_output.yml that con-
tains an optimized set of node locations (EPANET node IDs) to flush, an optimized set of pipe locations
(EPANET pipe IDs) to close, the final impact metric, the run date and CPU time. The log file called <out-
put prefix>flushing_output.log contains basic debugging information. A visualization YAML configuration
file named <output prefix>flushing_output_vis.yml is also created. The visualization subcommand is
automatically run using this YAML file.

63

flushing configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [PE] # Impact metric
tai file: Net3_bio.tai # Health impact file name, required for public health metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection
msx species: null # MSX species used to compute impact

flushing:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
flush nodes:

feasible nodes: NZD # Feasible flushing nodes
infeasible nodes: NONE # Infeasible flushing nodes
max nodes: 2 # Maximum number of nodes to flush
rate: 800.0 # Flushing rate [gallons/min]
response time: 0.0 # Time [min] between detection and flushing
duration: 480.0 # Flushing duration [min]

close valves:
feasible pipes: ALL # Feasible pipes to close
infeasible pipes: NONE # Infeasible pipes to close
max pipes: 0 # Maximum number of pipes to close
response time: 0.0 # Time [min] between detection and closing pipes

solver:
type: coliny:StateMachineLS # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 6.2: The flushing configuration template file.

64

6.4 Flushing Response Examples

To demonstrate the two different solvers available in the flushing subcommand, two examples are presented.
Both examples have the same characteristics in terms of the contamination scenario and flushing parameters.
EPANET Example Network 3 (Net3.inp) is the network used and the contamination scenario is an hour long
injection at node 101 beginning at hour 3 in the simulation. A maximum of three hydrants can be flushed for
a duration of eight hours at a rate 800 gal/min. The impact metric being minimized is population exposed
(PE). In addition, a third example is provided to demonstrate the evaluate option.

6.4.1 Example 1

The first example uses the EA solver and the configuration file, flushing_ex1.yml, is shown in Figure 6.3.

The example can be executed using the following command line:
wst flushing flushing_ex1.yml

The YAML output file, Net3flushing_output.yml, for example 1 is shown in Figure 6.4. The EA selected
to flush nodes 111, 193 and 197 for a PE impact value of 5226. The CPU time was 4091 seconds or a little
over an hour.

65

network:
epanet file: Net3/Net3.inp

scenario:
location: [101]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [111, 127, 179]
flush nodes:

feasible nodes: NZD
infeasible nodes: NONE
max nodes: 3
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: coliny_ea
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 30000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

logfile: null
verbose: 0

configure:
output prefix: flushing_ex1/Net3
debug: 0

Figure 6.3: The flushing configuration file for example 1.

66

flushing output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 640.797 # CPU time (sec)
directory: C:/WST-1.2/examples/flushing_ex1
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’197’, ’111’, ’193’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 5226.35 # Objective value

Figure 6.4: The flushing YAML output file for example 1.

67

6.4.2 Example 2

The second example uses the network solver without initial points and the configuration file, flush-
ing_ex2.yml, is shown in Figure 6.5.

network:
epanet file: Net3/Net3.inp

scenario:
location: [101]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [111, 127, 179]
flush nodes:

feasible nodes: NZD
infeasible nodes: NONE
max nodes: 3
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: coliny:StateMachineLS
options:
logfile: null
verbose: 0

configure:
output prefix: flushing_ex2/Net3
debug: 0

Figure 6.5: The flushing configuration file for example 2.

The example can be executed using the following command line:
wst flushing flushing_ex2.yml

The YAML output file, Net3flushing_output.yml, for example 2 is shown in Figure 6.6. The network solver
selected to flush nodes 101, 103 and 109 for a PE impact metric of 4919. The CPU time was 126 seconds or
approximately 2 minutes.

Examining the output files from the two examples shows that the optimization solvers identified different
solutions. As EAs are not guaranteed to find the optimal solution, these results are not unexpected. In
addition, the CPU times to obtain the solutions are quite different. The EA solution took about 10 minutes

68

flushing output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 121.313 # CPU time (sec)
directory: C:/WST-1.2/examples/flushing_ex2
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’101’, ’103’, ’109’] # List of nodes to flush
pipes: [] # List of pipes to close
objective: 4918.76 # Objective value

Figure 6.6: The flushing YAML output file for example 2.

to obtained, while the network solver solution was achieved in approximately 2 minutes.

6.4.3 Example 3

The third example uses the evaluate option and the configuration file, flushing_ex3.yml, is shown in Figure
6.7. In this example, the same contamination scenario is used but only two (2) flushing locations are evaluated
in terms of reducing the PE impact metric. The flushing locations being evaluated are nodes 101 and 127.

The example can be executed using the following command line:
wst flushing flushing_ex3.yml

The YAML output file, Net3flushing_output.yml, for example 3 is shown in Figure 6.8. These two flushing
locations result in a PE impact metric of 10,759.

69

network:
epanet file: Net3/Net3.inp

scenario:
location: [101]
type: MASS
strength: 1.450000e+010
species: null
start time: 180
end time: 240
tsg file: null
tsi file: null
msx file: null
msx species: null
merlion: false

impact:
erd file: null
metric: [PE]
tai file: Net3/Net3_bio.tai
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: null

flushing:
detection: [111, 127, 179]
flush nodes:

feasible nodes: [’101’, ’127’]
infeasible nodes: NONE
max nodes: 2
rate: 800.0
response time: 0.0
duration: 480.0

close valves:
feasible pipes: NONE
infeasible pipes: NONE
max pipes: 0
response time: 0.0

solver:
type: EVALUATE
options:
logfile: null
verbose: 0

configure:
output prefix: flushing_ex3/Net3
debug: 0

Figure 6.7: The flushing configuration file for example 3.

flushing output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 3.016 # CPU time (sec)
directory: C:/WST-1.2/examples/flushing_ex3
log file: Net3flushing_output.log # Log file

flushing:
nodes: [’101’, ’127’] # List of nodes to flush
pipes: [NONE] # List of pipes to close
objective: 10758.9 # Objective value

Figure 6.8: The flushing YAML output file for example 3.

70

Chapter 7

Booster Station Placement

Disinfection booster stations are commonly used throughout water distribution networks to maintain drinking
water standards. Disinfectants degrade as they move through the system and booster stations, designed
to inject disinfectant at strategic locations, help maintain residual levels. Booster stations can also be
placed with water security objectives in mind. WST includes two booster subcommands, booster_msx and
booster_mip that are designed to place booster stations to minimize the impact of a contamination incident.
These subcommands use different approaches to model the reaction dynamics between a contaminant and
disinfectant.

The booster_msx subcommand uses EPANET-MSX to simulate the reaction dynamics between the con-
taminant and disinfectant. A flowchart representation of the booster_msx subcommand is shown in Figure
7.1. The booster_msx subcommand employs an iterative process that combines contaminant transport,
impact assessment and optimization. The optimization process identifies a set of booster station locations
where disinfectant is injected. The contaminant and disinfectant injections and their reaction dynamics are
simulated in the contaminant transport process and the effectiveness of the booster injections are evaluated
based upon the impact assessment process. Since the booster_msx subcommand relies on the tevasim and
sim2Impact subcommands, their required input is also required for the booster_msx subcommand. Ad-
ditionally, the sensor network design used to detect the contamination incident(s) and the booster station
characteristics are required inputs. The utility network model is defined by a EPANET INP file, while the
rest of the input can be specified in the booster_msx WST configuration file.

The booster_mip subcommand uses the linear water quality model Merlion and assumes the reaction dynam-
ics between the contaminant and disinfectant can be approximated by a neutralization or limiting reagent
reaction model. A flowchart representation of the booster_mip subcommand is shown in Figure 7.2. The
utility network model is defined by a EPANET INP file. Additional input specified in the booster_mip WST
configuration file are the contamination scenarios, the sensor network design used to detect the contamination
incident(s) and the booster station characteristics.

71

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

Consequences
Input

Impact File Booster Placement
Optimization

 Sensor
Placement

Booster
Characteristics

Booster
Locations

Figure 7.1: Multi-species reaction booster placement flowchart.

Contaminant
Transport

 Utility Network
Model

Simulation
Input

Booster Placement
Optimization

 Sensor
Placement

Booster
Characteristics

Booster
Locations

Figure 7.2: MIP booster placement flowchart.

7.1 Booster Placement Using Multi-species Reaction

The booster_msx subcommand uses optimization methods integrated with EPANET-MSX to evaluate
booster placements using multi-species reaction dynamics between the contaminant and disinfectant. The
booster station placement problem formulation selects a set of booster station locations that minimizes
the average impact of all contamination incidents given a set of potential booster stations that inject a
disinfecting agent. The mathematical formulation can be written as follows:

minimize 1
A

∑
a∈A

da,max (7.1)

subject to
∑
b∈B

yb ≤ Bmax (7.2)

yb ∈ {0, 1} ∀b ∈ B (7.3)

72

where A represents a set of contamination incidents, damax defines the maximum impact of the contamination
incident a, B represents the set of potential booster station locations, yb is a binary variable which is 1 if node
b is selected as a booster station location and Bmax is the maximum number of booster station locations.
The maximum impact of a contamination incident, da,max, is the total impact across the entire network at
the end of the simulation assuming that the contaminant was not detected by a sensor, and no interventions
to reduce impacts were implemented. This value is found in the -1 entry of the impact file. For this problem,
it is assumed that booster stations can be located at any user-defined nodes in the network.

7.1.1 Booster MSX Solvers

The multi-species booster station placement problem is solved through an iterative optimization process
which selects different sets of booster station locations and evaluates their effectiveness in minimizing the
impact of a set of contamination incidents. Two optimization methods, an evolutionary algorithm and a
network solver, are available in WST to solve this problem. Each solver is explained in more detail in the
following subsections.

7.1.1.1 Evolutionary Algorithm

The evolutionary algorithm (EA) included with DAKOTA, Coliny EA, is used in the optimization routine
for the booster_msx subcommand. Additional information on DAKOTA/Coliny solvers can be found at
http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html and in the DAKOTA user manual
(Adams et al., 2013).

To design an EA, the parameter space for the optimization problem is first encoded into a string of numbers.
This encoded representation of the problem is called a genetic string, where each element of the genetic
string represents one parameter. When the EA is used with booster_msx the parameter space is defined
by the number of booster station locations. Each location is assigned a sequential integer that represents a
feasible location within the EPANET network. The final EA solution is translated to represent EPANET
node IDs.

The EA has several solver options that define how the EA evolves. These options can be set in the
[solver][options] sections of the booster_msx WST configuration file and are specific to the Coliny
EA solver. The EA evolves an initial genetic strings of size [population_size] that is set based on
[initialization_type] using the following steps:

1. Evaluation: Evaluate the solution for each genetic string. This involves function calls to the tevasim
and sim2Impact subcommands for each string to define the fitness score.

2. Breeding: Select two members of the population based on fitness. The probability of selection is based
on [fitness_type].

3. Crossover: Crossover two members based on [crossover_type] and [crossover_rate].

4. Mutation: Mutate the two members based on [mutation_type] and [mutation_rate].

5. Steps 2-4 are repeated until the entire population has been changed.

6. Replacement: After a new population is created, the old population is replaced by the current popu-
lation while keeping the highest ranked string (elitist = 1 replacement option).

Steps 1-6 are repeated until [max_iterations] or [max_function_evaluations] criteria is met.

7.1.1.2 Network Solver

The network solver used in WST is a network-constrained, derivative-free local search optimization algorithm.
It is a discrete analog-to-pattern search. The allowable moves are to adjacent nodes, rather than moves in the

73

http://dakota.sandia.gov/docs/dakota/5.2/html-ref/index.html

continuous space. This approach provides local refinement of candidate solutions. The valid moves include
removing a node location and replacing it with one anywhere in the network. Two forms of the network
solver can be used: with and without initial starting points. The initial starting points are node locations
in the network in which the algorithm should begin its local search. If these points are not supplied to the
algorithm, then it reduces to a greedy placement algorithm. Convergence is met when no remaining moves
improve the solution.

7.1.2 booster_msx Subcommand

The booster_msx subcommand is executed using the following command line:
wst booster_msx <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst booster_msx --help

7.1.2.1 Configuration File

The booster_msx subcommand generates a template configuration file using the following command line:
wst booster_msx --template <configfile>

The booster_msx template configuration file is shown in Figure 7.3. Brief descriptions of the options are
included in the template after the # sign.

7.1.2.2 Configuration Options

Full descriptions of the WST configuration options used by the booster_msx subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

scenario
location

A list that describes the injection locations for the contamination scenarios. The options are:
(1) ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection
locations; (2) NZD, which denotes all nodes with non-zero demands as contamination injection
locations; or (3) an EPANET node ID, which identifies the node where contamination is intro-
duced. This allows easy specification of single or multiple contamination scenarios.
Required input unless a TSG or TSI file is specified.

type
The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOW-
PACED or SETPOINT. See the EPANET manual for additional information about source types
(Rossman, 2000).
Required input unless a TSG or TSI file is specified.

strength
The amount of contaminant injected into the network for the contamination scenarios. If the type
option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.

74

booster_msx configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: [’101’] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on type]
species: BIO # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: Net3_bio.msx # Multi-species extension file name
msx species: BIO # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [MC] # Impact metric
tai file: null # Health impact file name, required for public health metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection
msx species: BIO # MSX species used to compute impact

booster msx:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
toxin species: BIO # Toxin species injected in each contaminant scenario
decon species: CLF # Decontaminant injected from booster station
feasible nodes: ALL # Feasible booster nodes
infeasible nodes: NONE # Infeasible booster nodes
max boosters: 2 # Maximum number of booster stations
type: FLOWPACED # Booster source type: FLOWPACED
strength: 4.0 # Booster source strength [mg/L]
response time: 0.0 # Time [min] between detection and booster injection
duration: 600.0 # Time [min] for booster injection

solver:
type: coliny_ea # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 7.3: The booster_msx configuration template file.

Required input unless a TSG or TSI file is specified.
species

The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but
only one is injected into the network. For cases where multiple contaminants are injected, a TSI
file is needed.
Required input for EPANET-MSX unless a TSG or TSI file is specified.

start time
The injection start time that defines when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents
an injection that starts at hour 1 of the simulation.
Required input unless a TSG or TSI file is specified.

end time

75

The injection end time that defines when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents
an injection that ends at hour 2 of the simulation.
Required input unless a TSG or TSI file is specified.

tsg file
The name of the TSG scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSG file will override the location, type, strength, species, start and end
times options specified in the WST configuration file. The TSG file format is documented in File
Formats Section 12.12.
Optional input.

tsi file
The name of the TSI scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSI file will override the TSG file, as well as the location, type, strength,
species, start and end time options specified in the WST configuration file. The TSI file format
is documented in File Formats Section 12.13.
Optional input.

msx file
The name of the EPANET-MSX multi-species file that defines the multi-species reactions to be
simulated using EPANET-MSX.
Required input for EPANET-MSX.

msx species
The name of the MSX species whose concentration profile will be saved by the EPANET-MSX
simulation and used for later calculations.
Required input for EPANET-MSX.

merlion
A flag (true or false) to indicate if the Merlion water quality simulator should be used. If an MSX
file is provided, EPANET-MSX will be used.
Required input, default = false.

impact
erd file

The name of the ERD database file that contains the contaminant transport simulation results.
It is created by running the tevasim subcommand. Multiple ERD files (entered as a list) can be
combined to generate a single impact file. This can be used to combine simulation results from
different types of contaminants, in which the ERD files were generated from different TSG files.
Required input.

metric
The impact metric used to compute the impact file. Options include EC, MC, NFD, PD, PE, PK,
TD, TEC or VC. One impact file is created for each metric selected. These metrics are defined
in Section 4.1.
Required input.

tai file
The name of the TAI file that contains health impact information. The TAI file format is docu-
mented in File Formats Section 12.11.
Required input if a public health metric is used (PD, PE or PK).

response time
The number of minutes that are needed to respond to the detection of a contaminant. This
represents the time that it takes a water utility to stop the spread of the contaminant in the

76

network and eliminate the consumption of contaminated water. As the response time increases,
the impact increases because the contaminant affects the network for a greater length of time.
Required input, default = 0 minutes.

detection limit
The concentration thresholds needed to perform detection with a sensor. There must be one
threshold for each ERD file. The units of these detection limits depend on the units of the
contaminant simulated for each ERD file (e.g., number of cells of a biological agent). The units
for detection limit are the same as for the MASS values that are specified in the TSG file.
Required input, default = 0.

detection confidence
The number of sensors that must detect an incident before the impacts are calculated.
Required input, default = 1 sensor.

msx species
The name of the MSX species tracked in the EPANET-MSX simulation. This parameter is
required for multi-species contamination incidents created by tevasim subcommand.
Required input for EPANET-MSX, default = first species listed in the ERD file

booster msx
detection

The sensor network design used to detect contamination scenarios. The sensor locations are used
to compute a detection time for each contamination scenario in the TSG file. The options are a
list of EPANET node IDs or a file name which contains a list of EPANET node IDs.
Required input.

toxin species
The name of the contaminant species that is injected in each contamination scenario. This is the
species that interacts with the injected disinfectant and whose impact is going to be minimized.
Required input.

decon species
The name of the decontaminant or disinfectant species that is injected from the booster stations.
Required input.

feasible nodes
A list that defines nodes that can be considered for the booster station placement problem. The
options are: (1) ALL, which specifies all nodes as feasible booster station locations; (2) NZD,
which specifies all non-zero demand nodes as feasible booster station locations; (3) NONE, which
specifies no nodes as feasible booster station locations; (4) a list of EPANET node IDs, which
identifies specific nodes as feasible booster station locations; or (5) a filename, which is a space
or comma separated file containing a list of specific nodes as feasible booster station locations.
Required input, default = ALL.

infeasible nodes
A list that defines nodes that cannot be considered for the booster station placement problem.
The options are: (1) ALL, which specifies all nodes as infeasible booster station locations; (2)
NZD, which specifies non-zero demand nodes as infeasible booster station locations; (3) NONE,
which specifies no nodes as infeasible booster station locations; (4) a list of EPANET node IDs,
which identifies specific nodes as infeasible booster station locations; or (5) a filename, which is
a space or comma separated file containing a list of specific nodes as infeasible booster station
locations.
Optional input, default = NONE.

max boosters

77

The maximum number of booster stations that can be placed in the network. The value must be
a nonnegative integer or a list of nonnegative integers. When a list is specified, the optimization
will be performed for each number in this list.
Required input.

type
The injection type for the disinfectant at the booster stations. The option is FLOWPACED. See
the EPANET manual for additional information about source types Rossman (2000).
Required input.

strength
The amount of disinfectant injected into the network from the booster stations. For the source
type FLOWPACED, the strength units are in mg/L.
Required input.

response time
The time in minutes between the detection of a contamination incident and the start of injecting
disinfectants from the booster stations. The value is a nonnegative integer. For example, a value
of 120 represents a 120 minutes or a 2 hour delay between the time of detection and the start of
booster injections.
Required input.

duration
The length of time in minutes that disinfectant will be injected at the booster stations during the
simulation. The value is a nonnegative integer. For example, a value of 240 means that a booster
would simulate injection of disinfectant at a particular node for 4 hours. This duration is applied
to all booster station locations identified in the optimization process.
Required input.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.
Required input.

options
A list of options associated with a specific solver type.
Optional input.

logfile
The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes

78

A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

In addition to these standard WST configuration options, the solver block can define an evaluation option.
To evaluate the placement of the booster stations without solving the optimization problem, the solver
type can be set as EVALUATE. This option allows a booster placement to be evaluated against a different
contamination incident than which it was designed. The solver block can also define specific options for the
optimization solver. The solver options should be modified according to the specific optimization problem.
If the options are not set in the solver block, then the default values for these options are used. The EA
solver available in the booster_msx subcommand has numerous options which can be defined. Additional
information on the options available for the EA solver can found in the DAKOTA user manual (Adams et al.,
2013). An example of the EA solver options are listed below.

solver:
type: coliny_ea
options:

crossover_rate: 0.8
crossover_type: uniform
fitness_type: linear_rank
initialization_type: unique_random
max_function_evaluations: 30000
max_iterations: 1000
mutation_rate: 1
mutation_type: offset_uniform
population_size: 50
seed: 11011011

The network solver has two options that can be set in the solver block of the configuration file.
solver:

type: coliny:StateMachineLS
options:

verbosity: 2
max_fcn_evaluations: 0

7.1.2.3 Subcommand Output

The booster_msx subcommand creates a YAML file called <output prefix>booster_msx_output.yml that
contains an optimized list of node locations (EPANET node IDs) to inject the disinfectant, the final im-
pact metric, the run date and CPU time. The log file called <output prefix>booster_msx_output.log
contains basic debugging information. A visualization YAML configuration file named <output pre-
fix>booster_msx_output_vis.yml is also created. The visualization subcommand is automatically run
using this YAML file.

79

7.2 Booster Placement Using Neutralization or Limiting Reagent Reaction

If the contaminant or the disinfectant are present in the water distribution system in large excess quantities
to each other, the booster station placement problem can be formulated as a mixed-integer program (MIP).
The booster_mip subcommand uses this MIP to determine optimal node locations of booster stations used
for responding to contamination incidents.

Two separate model formulations are available within the booster_mip subcommand. These are referred to
as the neutralization (NEUTRAL) formulation and the limiting reagent (LIMIT) formulation. Each has a
unique set of advantages that can be leveraged depending on the needs of the user. The NEUTRAL formu-
lation models the idealized situation in which the disinfecting agent (e.g., chlorine) immediately inactivates
any amount of contaminant it comes into contact with; the amount of disinfectant available for inactivation
is not considered. This allows for a highly compact model formulation, which is tractable for application
to both large water distribution systems and large scenario ensembles. The placements resulting from the
NEUTRAL formulation represent booster station locations that are optimal when the amount of disinfectant
required to perform inactivation is small and the time required for complete inactivation is fast.

The LIMIT formulation models the case where the disinfectant is consumed during the reaction with the
contaminant. This is more realistic than the NEUTRAL formulation in that the optimal solution is highly
dependent on the amount of disinfectant injected by the booster stations. However, the model still assumes
that upon mixing, the reaction quickly continues until either the contaminant or disinfectant is completely
consumed. The LIMIT formulation has an input parameter, sigma, which indicates the ratio of disinfectant
to contaminant consumed in the reaction. This input parameter can be adjusted to approximate a more
realistic pairing of specific disinfectant and contaminant species (e.g., chlorine and E. coli).

The optimization is performed over an ensemble of contamination incidents. The booster_mip subcommand
uses Merlion to perform water quality simulations, which are used to generate the necessary data for the
optimization formulation. The amount of time required for simulations can differ depending on the problem
formulation selected by the user (e.g., LIMIT or NEUTRAL).

7.2.1 Neutralization NEUTRAL Formulation

The NEUTRAL formulation is as follows:

minimize
∑
a∈A

αa
∑
n∈N

∑
t∈T

δn,t,amn,t,a where mn,t,a = cn,t,adn,t (7.4)

subject to δn,t,a ≥ 1−
∑
b∈B

ybZn,t,a,b ∀n ∈ N, t ∈ T, a ∈ A (7.5)∑
b∈B

yb ≤ Bmax (7.6)

0 ≤ δn,t,a ≤ 1 ∀n ∈ N, t ∈ T, a ∈ A (7.7)
yb ∈ {0, 1} ∀b ∈ B (7.8)

where A represents the set of scenarios, N defines the set of network nodes, T represents the set of time
steps, B defines the set of potential booster station locations, αa is the probability of scenario a, mn,t,a and
cn,t,a are the mass and concentration, respectively, of contaminant leaving node n at time step t for scenario
a, dn,t is the demand for the corresponding node and time step and Bmax is the maximum number of booster
stations. The continuous variable, δn,t,a, indicates whether the contaminant is available for consumption at
node n and time step t for scenario a and the binary variable, yb, is 1 if node b is selected as a booster station
location. In addition, Zn,t,a,b is determined from the pre-computed booster station simulations. These
simulations determine the node-time pairs that are neutralized based on the specific contaminant scenario
and feasible booster station locations. The parameter Zn,t,a,b is equal to 1 only if a booster station installed

80

at node b neutralizes the contaminant leaving node n and time step t for scenario a, otherwise, Zn,t,a,b is 0.

Equation 7.4 is the objective function, which minimizes the mass consumed across all nodes, for every
scenario, for every time step in the simulation. Equation 7.5 ensures that δn,t,a equals 0 if at least one
selected disinfectant booster station location provides neutralization of node n at time step t for scenario a,
otherwise, δn,t,a equals 1. Equation 7.6 restricts the number of booster stations to be less than or equal to
Bmax and Equations 7.7 and 7.8 limit the range for δn,t,a and yb.

Contaminant and disinfectant simulations are pre-computed using Merlion. Pre-computed simulations define
the parameters Zn,t,a,b and mn,t,a. Similar simulations and parameters could be obtained using EPANET.
However, the linear water quality model defined in Merlion is necessary for the limiting reagent model.

7.2.2 Limiting Reagent LIMIT Formulation

The LIMIT formulation is as follows:

minimize
∑
a∈A

αa
∑
n∈N

∑
t∈T

cconn,t,adn,t (7.9)

subject to Gcconn,t,a = D(mcon
n,t,a − rconn,t,a) ∀a ∈ A (7.10)

Gcdeconn,t,a = D(mdecon
n,t,a − σrconn,t,a) ∀a ∈ A (7.11)

mdecon
b,t,a = ybIb,t,a ∀b ∈ B, t ∈ T, a ∈ A (7.12)

mdecon
n,t,a = 0 ∀n ∈ N \B, t ∈ T, a ∈ A (7.13)∑

b∈B

yb ≤ Bmax (7.14)

cconn,t,a, c
decon
n,t,a ≥ 0 ∀n ∈ N, t ∈ T, a ∈ A (7.15)

rconn,t,a ≥ 0 ∀n ∈ N, t ∈ T, a ∈ A (7.16)
yb ∈ {0, 1} ∀b ∈ B (7.17)

where A represents the set of scenarios, N defines the set of network nodes, T represents the set of time
steps, B defines the set of potential booster locations, αa is the probability of scenario a, dn,t is the demand
at node n and time step t, rn,t,a is the mass of contaminant removed at node n and time step t for scenario
a (based on the reaction dynamics between the contaminant and disinfectant), σ is the stoichiometric ratio
for the reaction dynamics (mass unit of disinfectant removed per mass unit of contaminant removed) and
Bmax is the maximum number of booster stations. In addition, cconn,t,a and cdeconn,t,a are the concentrations of
contaminant and disinfectant, respectively, at node n and time step t for scenario a. The variables mcon

n,t,a

and mdecon
n,t,a are the mass injection profiles for the contaminant and disinfectant, respectively, at node n and

time step t for scenario a. The variables G and D are matrices from the linear water quality model. A first
order decay rate can be added to the contaminant and disinfectant. The binary variable, yb, is 1 if node b
is selected as a booster station location. The variable Ib,t,a is the injection profile for booster b at time step
t for scenario a.

Equation 7.9 is the objective function, which minimizes the mass consumed across all nodes, for every
scenario, for every time step in the simulation. Equations 7.10 and 7.11 include the embedded linear water
quality model, as stored in the G and D matrices. Equation 7.12 sets the injection profile if a booster is
placed. Equation 7.13 sets the injection profile to 0 if a booster is not placed. The variable N \ B is the
set of nodes that are not potential booster station locations. Equation 7.14 restricts the number of booster
stations to be less than or equal to Bmax. Equation 7.15 places bounds on the contaminant and disinfectant
concentrations. Equation 7.16 places bounds on the disinfectant mass injection. Equation 7.17 defines yb as
a binary variable.

81

7.2.3 Booster MIP Solvers

The booster_mip subcommand requires a standard MIP solver to perform booster station placement. A
variety of public domain and commercial MIP solvers exist that can be used with the booster_mip subcom-
mand, including GLPK, CBC, PICO, CPLEX, GUROBI and XPRESS.

The modeling language, specified by the model format option in the booster mip block of the configuration
file, determines the true list of solvers available for booster station placement. The following shows examples
of solvers available with AMPL (Fourer et al., 2002) and Pyomo (Hart et al., 2012):

Solver [type] [model format]
====================================
GLPK glpk PYOMO
CPLEX cplex PYOMO
CPLEX cplex PYOMO
CPLEX cplexamp PYOMO
CPLEX cplexamp AMPL
GUROBI gurobi PYOMO
GUROBI gurobi PYOMO
GUROBI gurobi_ampl PYOMO
GUROBI gurobi_ampl AMPL
CBC cbc PYOMO
CBC cbc PYOMO
CBC cbc AMPL

Documentation for AMPL (Fourer et al., 2002) and Pyomo (Hart et al., 2012) can provide more information
about the solvers available with these modeling languages.

7.2.4 booster_mip Subcommand

The booster_mip subcommand is executed using the following command line:
wst booster_mip <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst booster_mip --help

7.2.4.1 Configuration File

The booster_mip subcommand generates a template configuration file using the following command line:
wst booster_mip --template <configfile>

The booster_mip template configuration file is shown in Figure 7.4. Brief descriptions of the options are
included in the template after the # sign.

7.2.4.2 Configuration Options

Full descriptions of the WST configuration options used by the booster_mip subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

scenario

82

location
A list that describes the injection locations for the contamination scenarios. The options are:
(1) ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection
locations; (2) NZD, which denotes all nodes with non-zero demands as contamination injection
locations; or (3) an EPANET node ID, which identifies the node where contamination is intro-
duced. This allows easy specification of single or multiple contamination scenarios.
Required input unless a TSG or TSI file is specified.

type
The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOW-
PACED or SETPOINT. See the EPANET manual for additional information about source types
(Rossman, 2000).
Required input unless a TSG or TSI file is specified.

strength
The amount of contaminant injected into the network for the contamination scenarios. If the type
option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.
Required input unless a TSG or TSI file is specified.

species
The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but
only one is injected into the network. For cases where multiple contaminants are injected, a TSI
file is needed.
Required input for EPANET-MSX unless a TSG or TSI file is specified.

start time
The injection start time that defines when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents
an injection that starts at hour 1 of the simulation.
Required input unless a TSG or TSI file is specified.

end time
The injection end time that defines when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents
an injection that ends at hour 2 of the simulation.
Required input unless a TSG or TSI file is specified.

tsg file
The name of the TSG scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSG file will override the location, type, strength, species, start and end
times options specified in the WST configuration file. The TSG file format is documented in File
Formats Section 12.12.
Optional input.

tsi file
The name of the TSI scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSI file will override the TSG file, as well as the location, type, strength,
species, start and end time options specified in the WST configuration file. The TSI file format
is documented in File Formats Section 12.13.
Optional input.

msx file
The name of the EPANET-MSX multi-species file that defines the multi-species reactions to be
simulated using EPANET-MSX.

83

Required input for EPANET-MSX.
msx species

The name of the MSX species whose concentration profile will be saved by the EPANET-MSX
simulation and used for later calculations.
Required input for EPANET-MSX.

merlion
A flag (true or false) to indicate if the Merlion water quality simulator should be used. If an MSX
file is provided, EPANET-MSX will be used.
Required input, default = false.

booster mip
detection

The sensor network design used to detect contamination scenarios. The sensor locations are used
to compute a detection time for each contamination scenario in the TSG file. The options are a
list of EPANET node IDs or a file name which contains a list of EPANET node IDs.
Required input.

model type
The model type used to determine optimal booster station locations. Options include NEUTRAL
(complete neutralization) or LIMIT (limiting reagent).
Required input, default = NEUTRAL.

model format
The modeling language used to build the formulation specified by the model type option. The
options are AMPL and PYOMO. AMPL is a third party package that must be installed by the
user if this option is specified. PYOMO is an open source software package that is distributed
with WST.
Required input, default = PYOMO.

stoichiometric ratio
The stoichiometric ratio used by the limiting reagent model (LIMIT) which represents the amount
of disinfectant used for each mass unit of toxin inactivated by the neutralization reaction. This
can be a number or a list of numbers greater than 0.0. When a list is specified, the optimization
will be performed for each number in this list. As the stoichiometric ratio approaches 0, the
LIMIT model converges to the NEUTRAL model.
Required input if the model type = LIMIT.

objective
The impact metric used to place the booster stations. In the current version, all models support
MC metric (mass of toxin consumed through the node demands). The PD metric is only supported
in the LIMIT Pyomo model.
Required input, default = MC.

PD dose threshold
The contaminant dose above which a person is considered dosed. Required input for PD objective.
Equivalent to ’DOSE_THRESHOLDS <num>’ TAI file option.

PD demand per capita
Per capita usage rate used to determine per-node population (flow units/person). Flow units
match those of the EPANET input file, which is likely GPM. Required input for PD objective.
Equivalent to the ’POPULATION demand <num>’ TAI file option.

PD ingestion rate
Daily volumetric ingestion rate per person (liters/day). Required input for PD objective. Equiv-
alent to the ’INGESTIONRATE <num>’ TAI file option.

PD ingestion type

84

Equivalent to the ’INGESTIONTYPE <name>’ TAI file option. Only ’demand’ is supported.
PD dose type

Equivalent to the ’DOSETYPE <name>’ TAI file option. Only ’total’ is supported.
toxin decay coefficient

The contaminant (toxin) decay coefficient. The options are (1) None, which runs the simulations
without first-order decay, (2) INP, which runs the simulations with first-order decay using the
coefficient specified in the EPANET INP file or (3) a number, which runs the simulation with
first-order decay and the specified first-order decay coefficient in units of (1/min) (overrides the
decay coefficient in the EPANET INP file). If the EPANET time units are not in minutes, the
value is converted.
Required input, default = 0.

decon decay coefficient
The disinfectant (decontaminant) decay coefficient. The options are (1) None, which runs the
simulations without first-order decay, (2) INP, which runs the simulations with first-order decay
using the coefficient specified in the EPANET INP file or (3) a number, which runs the simulation
with first-order decay and the specified first-order decay coefficient in units of (1/min) (overrides
the decay coefficient in the EPANET INP file). If the EPANET time units are not in minutes,
the value is converted.
Required input, default = 0.

feasible nodes
A list that defines nodes that can be considered for the booster station placement problem. The
options are: (1) ALL, which specifies all nodes as feasible booster station locations; (2) NZD,
which specifies all non-zero demand nodes as feasible booster station locations; (3) NONE, which
specifies no nodes as feasible booster station locations; (4) a list of EPANET node IDs, which
identifies specific nodes as feasible booster station locations; or (5) a filename, which is a space
or comma separated file containing a list of specific nodes as feasible booster station locations.
Required input, default = ALL.

infeasible nodes
A list that defines nodes that cannot be considered for the booster station placement problem.
The options are: (1) ALL, which specifies all nodes as infeasible booster station locations; (2)
NZD, which specifies non-zero demand nodes as infeasible booster station locations; (3) NONE,
which specifies no nodes as infeasible booster station locations; (4) a list of EPANET node IDs,
which identifies specific nodes as infeasible booster station locations; or (5) a filename, which is
a space or comma separated file containing a list of specific nodes as infeasible booster station
locations.
Optional input, default = NONE.

max boosters
The maximum number of booster stations that can be placed in the network. The value must be
a nonnegative integer or a list of nonnegative integers. When a list is specified, the optimization
will be performed for each number in this list.
Required input.

type
The injection type for the disinfectant at the booster stations. The options are MASS or FLOW-
PACED. See the EPANET manual for additional information about source types Rossman (2000).
Required input.

strength
The amount of disinfectant injected into the network from the booster stations. If the source
type option is MASS, then the units for the strength are in mg/min. If the source type option is
FLOWPACED, then units are in mg/L.

85

Required input.
response time

The time in minutes between the detection of a contamination incident and the start of injecting
disinfectants from the booster stations. The value is a nonnegative integer. For example, a value
of 120 represents a 120 minutes or a 2 hour delay between the time of detection and the start of
booster injections.
Required input.

duration
The length of time in minutes that disinfectant will be injected at the booster stations during the
simulation. The value is a nonnegative integer. For example, a value of 240 means that a booster
would simulate injection of disinfectant at a particular node for 4 hours. This duration is applied
to all booster station locations identified in the optimization process.
Required input.

evaluate
The option to evaluate the booster station placement created from the optimization process.
Optional input, default = false.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.
Required input.

options
A list of options associated with a specific solver type.
Optional input.

logfile
The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes
A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug

86

The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

In addition to these standard WST configuration options, the solver block can define specific options for the
solver selected. The solver options should be modified according to the specific optimization problem. The
booster_mip subcommand recognizes the following options in the solver block of the configuration file:

solver:
type: glpsol
options:

mipgap: 0.01

The solver block above shows an example of using the public domain solver GLPK (glpsol) with the LP-file
(lp) interface available in the modeling language Pyomo. A common option available with MIP solvers is
mipgap, which is used to balance the quality of the solution found by the solver with the time taken to
obtain the solution.

7.2.4.3 Subcommand Output

The booster_mip subcommand creates a YAML file called <output prefix>booster_mip_output-
<count>.yml (where <count> is an integer starting at 1) that contains an optimized list of node lo-
cations (EPANET node IDs) to inject the disinfectant, the final impact metric, the run date and CPU
time. If more than one booster station design is requested in the WST configuration file, the <count>
suffix is incrementally increased each time to create multiple YAML files. The log file called <output pre-
fix>booster_msx_output.log contains basic debugging information. A visualization YAML configuration file
named <output prefix>booster_mip_output_vis.yml is also created. The visualization subcommand is
automatically run using this YAML file.

87

booster_mip configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: null # Injection location: ALL, NZD or EPANET ID
type: null # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: null # Injection strength [mg/min or mg/L depending on type]
species: null # Injection species, required for EPANET-MSX
start time: null # Injection start time [min]
end time: null # Injection end time [min]
tsg file: Net3.tsg # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

booster mip:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
model type: NEUTRAL # Booster model type: NEUTRAL or LIMIT
model format: PYOMO # Booster optimization model: AMPL or PYOMO
stoichiometric ratio: [0.0] # Stoichiometric ratio [decon/toxin], LIMIT model only
objective: MC # Objective to minimize
PD dose threshold: 1.0e-08 # The contaminant dose above which a person is

considered dosed. Required input for PD objective.
Equivalent to ’DOSE_THRESHOLDS <num>’ TAI file
option.

PD demand per capita: 0.139 # Per capita usage rate used to determine per-node
population (flow units/person). Flow units match those
of the EPANET input file, which is likely
GPM. Required input for PD objective. Equivalent to
the ’POPULATION demand <num>’ TAI file option.

PD ingestion rate: 2.0 # Daily volumetric ingestion rate per person
(liters/day). Required input for PD
objective. Equivalent to the ’INGESTIONRATE <num>’ TAI
file option.

PD ingestion type: demand # Equivalent to the ’INGESTIONTYPE <name>’ TAI file
option. Only ’demand’ is supported.

PD dose type: total # Equivalent to the ’DOSETYPE <name>’ TAI file
option. Only ’total’ is supported.

toxin decay coefficient: 0 # Toxin decay coeffienct: None, INP or number
decon decay coefficient: 0 # Decontaminant decay coefficient: None, INP or number
feasible nodes: ALL # Feasible booster nodes
infeasible nodes: NONE # Infeasbile booster nodes
max boosters: [2] # Maximum number of booster stations
type: FLOWPACED # Booster source type: MASS or FLOWPACED
strength: 4.0 # Booster source strength [mg/min or mg/L depending on type]
response time: 0.0 # Time [min] between detection and booster injection
duration: 600.0 # Time [min] for booster injection
evaluate: false # Evaluate booster placement: true or false, default = false

solver:
type: glpk # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

boostersim:
eventDetection:
boosterimpact:

Figure 7.4: The booster_mip configuration template file.

88

7.3 Booster Placement Examples

Two booster station placement examples are provided. The first example determines booster station place-
ment assuming complete inactivation of the contaminant, and the second example evaluates this placement
in terms of a more realistic reaction dynamic between the contaminant and the disinfectant. The examples
use the EPANET Example Network 3 INP file, Net3.inp. A contamination scenario ensemble is defined using
all NZD nodes and a biological contaminant injection of 5.77e8 CFU/min (colony forming units per minute),
starting at time 0 and continuing for 6 hours. Sensors located at nodes 15, 35, 219 and 253 are used to detect
each contamination scenario and initiate the booster response action. Booster stations inject disinfectant
at 4 mg/L for 12 hours after detection, since no additional response time is added between detection and
booster station operation.

7.3.1 Example 1

The first example uses the booster_mip subcommand and the NEUTRAL approach. The model for-
mat is PYOMO and the solver is GLPK. These parameter options are listed in the configuration file,
booster_mip_ex1.yml, shown in Figure 7.5. The maximum number of booster stations is listed as an array
to indicate that five booster station designs should be created, using 2, 4, 6, 8 and 10 as the maximum num-
ber of booster stations to place in the network. This notation uses the generated model files to efficiently
solve for more than one design. The feasible booster station locations are limited to NZD nodes.

network:
epanet file: Net3/Net3.inp

scenario:
location: [NZD]
type: MASS
strength: 5.77e8
start time: 0
end time: 360

booster mip:
detection: [’15’, ’35’, ’219’, ’253’]
model type: NEUTRAL
model format: PYOMO
stoichiometric ratio: 0
objective: MC
toxin decay coefficient: 0
decon decay coefficient: 0
feasible nodes: NZD
infeasible nodes: NONE
fixed nodes: []
max boosters: [2,4,6,8,10]
type: FLOWPACED
strength: 4
response time: 0
duration: 1440
evaluate: false

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: booster_mip_ex1/Net3
debug: 0

Figure 7.5: The booster_mip configuration file for example 1.

The example can be executed using the following command line:
wst booster_mip booster_mip_ex1.yml

89

Since five booster station designs were requested, five YAML output files with the results are produced.
The file Net3booster_mip_output_3.yml, shown below in Figure 7.6 contains results for placing six booster
stations in the network.

booster_mip output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 10.078 # CPU time (sec)
directory: C:/WST-1.2/examples/booster_mip_ex1
log file: Net3booster_mip_output.log # Log file

booster:
nodes: [’101’, ’141’, ’171’, ’215’, ’219’, ’255’] # List of booster nodes
objective: 55415766.29447115 # Objective value

Figure 7.6: The booster_mip YAML output file for example 1.

Booster station placement using the LIMIT approach requires a few minor modifications to the WST con-
figuration file above. The model type option is changed from NEUTRAL to LIMIT and the sigma option
is set to a value greater than 0. The sigma option represents the stoichiometric ratio, which is a unit less
value that defines the unit mass of disinfectant needed to inactivate a unit mass of contaminant. For exam-
ple, a stoichiometric ratio of 0.01 specifies that 0.01 mg of a disinfectant is needed to inactivate 1 CFU of
contaminant.

7.3.2 Example 2

Since both the NEUTRAL and LIMIT formulations use simplifying assumptions to model the reaction
dynamics between a contaminant and a disinfectant, it is often useful to evaluate a booster station design from
the MIP methods using a more complex multi-species reaction model through the booster_msx subcommand.
While the booster_msx subcommand coupled with an EPANET-MSX model can be used to optimize booster
station placement, the number of function evaluations required for convergence often makes this process
infeasible.

The multi-species reaction equations in the Net3_EColi_TSB.msx file describe the inactivation of E. coli by
chlorine and the reaction of E. coli and chlorine with the nutrient broth (TSB) (Murray et al., 2011). The
contamination scenarios are setup using the TSI file, Net3_EColi_TSB.tsi. This file defines the same E. coli
injection as in the NEUTRAL approach, but includes a TSB injection at all NZD nodes in the network as
well. The configuration file, booster_msx_ex1.yml, is shown in Figure 7.7 to evaluate a booster station
design from the NEUTRAL approach.

The example can be executed using the following command line:
wst booster_msx booster_msx_ex1.yml

This analysis indicates that the booster stations placed with the assumption that the disinfectant com-
pletely inactivates the contaminant underestimates the mass consumed given a more realistic disinfectant
and contaminant reaction dynamics as represented in the the E. coli-TSB model.

90

network:
epanet file: Net3/Net3.inp

scenario:
tsi file: Net3/Net3_EColi_TSB.tsi
msx file: Net3/Net3_EColi_TSB.msx
msx species: EColi

impact:
erd file: null
metric: [MC]
tai file: null
response time: 0
detection limit: [0.0]
detection confidence: 1
msx species: EColi

booster msx:
detection: [’15’, ’35’, ’219’, ’253’]
toxin species: EColi
decon species: CL
feasible nodes: [’101’,’141’,’171’,’215’,’219’,’255’]
infeasible nodes: NONE
max boosters: 6
type: FLOWPACED
strength: 4.0
response time: 0.0
duration: 720

solver:
type: EVALUATE
options: {}
verbose: True

configure:
output prefix: booster_msx_ex1/Net3
debug: 0

Figure 7.7: The booster_msx configuration file for example 2.

91

Chapter 8

Source Identification

If a contamination incident is detected by a water utility, it will be important to determine the time and
location where the contaminant injection occurred. Once this information is available, the current extent
of contamination within the network can be estimated and appropriate control and clean-up strategies can
be devised in order to protect the population. The inversion subcommand included in WST is designed
to calculate a list of possible injection nodes and times given a set of measurements that could come from
manual grab samples and/or an event detection system (EDS).

Three major challenges associated with source identification calculations are addressed by this subcommand.
First, due to the currently available water quality sensor technology, only a discrete yes/no indication of con-
tamination is available from these sensors. Therefore, the source identification algorithms provided through
this subcommand are designed to work with binary measurements. Second, measurement information avail-
able from a sparse set of fixed sensors might not be sufficient to narrow down the possible contamination
nodes to a tractable number. One strategy is to get additional measurements in the form of manual grab
samples from locations around the network to help the source identification calculations better identify the
contamination location(s). The location of these manual grab samples can be carefully selected to provide
maximum distinguishability between the possible incidents by using the grabsample subcommand (described
in Chapter 9. The source inversion algorithms in WST can use measurement information from both fixed
sensors and manual grab samples. A flowchart representation of the inversion subcommand is shown in
Figure 11.9. The utility network model is defined by an EPANET compatible network models (INP format)
in WST. The sensor/EDS measurements are supplied through a measurements file (See File Formats Section
12.7). Additional details on the source inversion approach to identify the contaminant injection location(s)
is supplied by the user in the WST configuration file.

 Utility Network
Model Measurements

Source Inversion

Likely Injection
Scenarios

Figure 8.1: Contamination source identification flowchart.

92

8.1 Source Identification Formulations

The inversion subcommand contains three different source identification formulations, a Mixed Integer
Programming (MIP) formulation, a formulation based on Bayesian probability calculations and a modified
version of the Contaminant Status Algorithm by De Sanctis et al. (2009). The following subsections provide
brief descriptions of these formulations.

8.1.1 MIP Formulations

The Mixed Integer Programming (MIP) formulation assumes that a field sensor (or manual grab sample)
would yield a positive measurement if the contaminant concentration is above a certain positive threshold
concentration and a negative measurement if it is below a certain negative threshold concentration. There-
fore, if a sensor measurement (or a manual grab sample) yields a positive measurement, any corresponding
calculated concentration from the water quality model above the positive threshold is deemed to be a perfect
fit with this measurement data. Therefore, while constructing an objective for estimation, only calculated
concentrations below this positive threshold should be penalized. Likewise, if a sensor (or manual grab
sample) yields a negative measurement, only the corresponding calculated concentration above the negative
threshold should be penalized. The base MIP formulation is presented followed by descriptions of three addi-
tional variations that perform source inversion under different assumptions. For more detailed information,
refer to Mann et al. (2012b).

The base MIP formulation for discrete measurements can be selected using the formulation option of
MIP_discrete in the inversion block of the inversion WST configuration file.

minimize
∑

(n,t)∈S−

negn,t +
∑

(n,t)∈S+

posn,t (8.1)

subject to Gcn,t = DmR ∀n ∈ N, t ∈ T (8.2)
0 ≤ mn,t ≤ Byn ∀n ∈ N, t ∈ T (8.3)∑
n∈N

yn ≤ Imax yn ∈ {0, 1} (8.4)

negn,t ≥ 0, negn,t ≥ cn,t − τneg ∀ (n, t) ∈ S− (8.5)
posn,t ≥ 0, posn,t ≥ τpos − cn,t ∀ (n, t) ∈ S+. (8.6)

where N is the set of all nodes, T is the set of all time steps, S− represents the set containing the node-time
step pairs where the discrete measurement is a negative detection and S+ defines the set containing the node-
time step pairs where the discrete measurement is a positive detection. The variables G and D are matrices
from the linear water quality model. The variable cn,t is the calculated concentrations from the water quality
model at node n and time step t, m is the vector of unknown time-discretized contaminant injection profile
over all node and time steps and mn,t is an element in the mR vector representing unknown mass injected
at node n and time step t. A binary variable, yn, indicates contaminant injection at node n if yn=1 and
B is a reasonable upper bound on the contaminant injection mass flow rate mn,t. The variable Imax is the
maximum number of possible injection locations. The user supplies two thresholds, τneg and τpos, which can
be used as concentration set-points indicating the presence or absence of contaminant. The variable negn,t
is the non-negative difference between the modeled concentration cn,t and the user supplied threshold τneg
for node-time step pairs belonging to S−. The variable posn,t is the non-negative difference between the
modeled concentration cn,t and the user supplied threshold τpos for node-time step pairs belonging to S+.

Equation 8.1 is the MIP objective, which minimizes the mismatch between the discrete measurements and
their corresponding concentrations calculated from the model given the detection thresholds. Equation 8.2
is the embedded linear water quality model (Merlion). Equation 8.3 is the big-M constraint that enforces
bound on the maximum mass flow rate of the injections. Equation 8.4 is the maximum number of injections

93

constraint, while Equation 8.5 and Equation 8.6 are used to enforce negn,t and posn,t as non-negative
differences between modeled concentration and threshold for positive and negative measurements, τpos and
τneg, respectively.

The source inversion problem is ill-posed with non-unique solutions. To tackle this issue, the inversion
subcommand solves the problem multiple times, each time adding integer cuts to not include previously found
solutions until the objective at the solution has reduced significantly. Therefore, the final solution generated
by the inversion subcommand contains a list of objective values for each solve and the corresponding source
node that was identified for that particular solve. Because of the spatial and temporal diversity of the possible
contaminant injection profiles, obtaining reasonable solutions from the base formulation (in the presence
of limited data) can be challenging. Therefore, depending on the possible contaminant injection profile
assumptions, additional restrictions can be applied to reduce the size of the search space. Figure 8.2 shows
the different injection profile restrictions that are supported through the different formulation variations.
When limited and/or less frequent measurement data is available (e.g., only manual grab samples), the Step
or the No Decrease formulation variations are recommended.

Figure 8.2: Two different injection profiles used by the formulation variations.

The first variation of this formulation adds a constraint to allow for the case where the mass flow rate of the
contaminant can stay the same or increase with time. The No Decrease profile shown in Figure 8.2 gives an
example of this kind of injection. This variant of the formulation can be run using the formulation option
of MIP_discrete_nd in the inversion block.

mn,t−1 ≤ mn,t ∀n ∈ N, t ∈ T : j 6= 0 (8.7)

The second variation includes two additional constraints:

mn,t ≤ S ∀n ∈ N, t ∈ T (8.8)
mn,t ≥ S −B(1− yn) ∀n ∈ N, t ∈ T (8.9)

This variant requires the injection to be a single step of any calculated strength S and can be run using
the formulation option of MIP_discrete_step in the inversion block. The Step profile shown in Figure 8.2
illustrates an example of this type of injection.

94

The third variation is a Linear Program (LP) that can be solved very quickly in the case where a single
incident node is sought. The LP can be solved efficiently by enumerating the binary variables. In this case,
each node is checked separately but fixing its corresponding binary variable to 1, and the remaining to zero.
This LP is solved for each of the nodes and the objective values are compared. The LP variant of this
algorithm can be run using the formulation option of LP_discrete in the inversion block.

8.1.2 Bayesian Probability Based Formulation

This formulation calculates the probability of a node being the true injection node using Bayes rule:

P (i|m) = P (m|i)P (i)
P (m)

(8.10)

where contamination incident i is an injection at a node and at a particular time step and P (i|m) is the
probability of an incident i given a set of measurements m. Here, P (i) is the prior probability of an
incident. This formulation assumes that only a single injection incident is possible, and therefore it uses an
uniform prior of 1/(all possible incidents). Since it is difficult to estimate P (m) (the prior probability of
a measurement), this calculation is substituted by obtaining the P (i|m) for all possible incidents and then
normalizing them to 1. Finally, P (m|i) is the probability of a measurement given an injection incident. It is
calculated using the following equation:

P (m|i) = (1− pf)match(i)pmeas−match(i)f (8.11)

where, pf is the probability of measurement failure, meas is the total number of measurements and match(i)
is the number of discrete measurements that match the discrete concentrations obtained by simulating
incident i. Note that calculating the discrete concentration profile obtained by simulating an incident requires
a threshold that is specified by using the negative threshold option of the inversion block of the inversion
configuration file.

After calculating the normalized probability P (i|m) for all incidents, only those having a probability above
a confidence limit are reported as the set of likely incidents. This confidence limit is by default set to 95%
(0.95) and can be changed by using the confidence option of the inversion block.

8.1.3 Contaminant Status Algorithm (CSA)

The Contaminant Status Algorithm (CSA), proposed by De Sanctis et al. (2009), performs source identifica-
tion by assigning status to each candidate node-time pair as either being safe (possible injection candidate),
unsafe (not an injection candidate) or unknown. In WST, the CSA has been modified to assign a likeliness
measure of 1 to a node if it is contained in the list of unsafe node-time pairs, while all other nodes are
assigned a likeliness measure of 0.

CSA uses a linear input-output water quality model generated through the Particle Backtracking Approach
(PBA) proposed by Shang et al. (2002). For every sensor j and analysis time t, this model provides the
upstream reachability set, Uj(t), that contains the list of node-time pairs that are hydraulically connected
to that measurement. Using this set, a station source matrix, Sj , which represents the list of safe, unsafe
and unknown nodes based on all the measurements available from sensor node j only, is updated iteratively
using the following algorithm:

1. Initialize Sj(i, t̂) = Safe, ∀i ∈ N,∀t̂ ∈ T

2. For (i, t̂) ∈ Uj(t)

(a) For significant hydraulic connections (based on a threshold) - if the current measurement at sensor
j is positive, Set Sj(i, t̂) = Unsafe, else Set Sj(i, t̂) = Safe

95

(b) For weak hydraulic connections, Set Sj(i, t̂) = Safe

where N is the set of all candidate nodes and T is the set of all time steps in the time horizon. Based on
the status from every station source matrix, Sj , a total source status matrix S that contains the overall
status of all candidate node-time pairs (i, t̂) is updated using the following rules - an unsafe node-time pair
can only change to safe based on its corresponding state in Sj ; an unknown node-time pair can change
to both safe or unsafe; and if a node-time pair is safe, it will remain safe. Hence, the total source status
matrix is also updated iteratively over the complete list of measurement time steps to obtain the final status
of all candidate injection node-time pairs. Consequently, CSA allows for multiple simultaneous injections,
however, it assumes perfect measurements when marking candidate injections as safe.

8.2 Source Identification Solvers

The MIP algorithm builds an optimization formulation, and requires a MIP solver to perform source inver-
sion. Therefore, if the MIP algorithm is selected (algorithm: optimization) as described in section 8.3.2),
then a solver needs to be specified. The solvers recognized by the inversion subcommand are the same as
those recognized by booster_mip subcommand (See Section 7.2.3 for more details).

8.3 inversion Subcommand

The inversion subcommand is executed using the following command line:
wst inversion <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst inversion --help

8.3.1 Configuration File

The inversion subcommand generates a template configuration file using the following command line:
wst inversion --template <configfile>

The inversion template configuration file is shown in Figure 8.3. Brief descriptions of the options are
included in the template after the # sign.

8.3.2 Configuration Options

Full descriptions of the WST configuration options used by the inversion subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

measurements
grab samples

The name of the file that contains all the measurements from the manual grab samples and the
fixed sensors. The measurement file format is documented in File Formats Section 12.7.
Required input.

inversion

96

inversion configuration template
network:

epanet file: Net3.inp # EPANET network file name
measurements:

grab samples: measures.dat # Measurements file name
inversion:

algorithm: optimization # Source inversion algorithm: optimization, bayesian, or csa
formulation: MIP_discrete_nd # Optimization formulation type, optimization only
model format: PYOMO # Source inversion optimization formulation: AMPL or PYOMO
horizon: 1440.0 # Amount of past measurement data to use (min)
num injections: 1.0 # No. of possible injections
measurement failure: 0.05 # Probability that a sensor fails
positive threshold: 100.0 # Sensor threshold for positive contamination measurement
negative threshold: 0.1 # Sensor threshold for negative contamination measurement
feasible nodes: null # Feasible source nodes
candidate threshold: null # Objective cut-off for candidate nodes.
confidence: null # Probability confidence for candidate nodes.
output impact nodes: false # Print likely injection nodes file

solver:
type: glpk # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 8.3: The inversion configuration template file.

algorithm
The algorithm used to perform source inversion. The options are optimization, bayesian, or csa.
The optimization algorithm requires AMPL or PYOMO along with a MIP solver. The bayesian
algorithm uses Bayes’ Rule to update probability of a particular node being the contaminant
source node. The CSA is the Contaminant Status Algorithm by De Sanctis et al. (2009).
Required input, default = optimization.

formulation
The formulation used by the optimization algorithm. The options are LP_discrete (dis-
crete LP), MIP_discrete (discrete MIP), MIP_discrete_nd (discrete MIP with no decrease) or
MIP_discrete_step (discrete MIP for step injection).
Required input for optimization algorithm, default = MIP_discrete.

model format
The modeling language used to build the formulation specified by the formulation option. The
options are AMPL and PYOMO. AMPL is a third party package that must be installed by the
user if this option is specified. PYOMO is an open source software package that is distributed
with WST.
Required input for optimization algorithm, default = PYOMO.

horizon
The minutes over which the past measurement data is used for source inversion. It is calculated
backwards from the latest measurement time in the measurements file. If the horizon is longer than
the time between the latest measurement and simulation start time, then all the measurements
are used for source inversion.
Required input, default = None (Start of simulation).

num injections

97

The number of possible injections to consider when performing inversion. Multiple injections are
only supported by the MIP formulation. This value must be set to 1 for the LP model or the
probability algorithm.
Required input for optimization algorithm, default = 1.

measurement failure
The probability that a sensors gives an incorrect reading. Must be between 0 and 1.
Required input for the bayesian algorithm, default = 0.05.

positive threshold
The concentration threshold used by the sensors to flag a positive detection measurement. This
is a parameter in the optimization algorithm (Equation 8.6).
Required input for optimization algorithm, default = 100 mg/L.

negative threshold
The concentration threshold used by the sensors to flag a negative detection measurement. This
is a parameter in the optimization algorithm (Equation 8.5).
Required input for optimization algorithm, default = 0.0 mg/L.

feasible nodes
A list that defines nodes that can be considered for the source inversion problem. The options are:
(1) ALL, which specifies all nodes as feasible source locations; (2) NZD, which specifies all non-
zero demand nodes as feasible source locations; (3) a list of EPANET node IDs, which identifies
specific nodes as feasible source locations; or (4) a filename, which is a space or comma separated
file containing a list of specific nodes as feasible source locations.
Optional input.

candidate threshold
The objective cut-off value for candidate contamination incidents using the optimization algo-
rithm. The objective value represents the likelihood of a particular node being the injection node
(See Equation 8.13). The objective values are normalized to 1 and only the nodes having their
objective values greater or equal to the threshold are reported in the inversion results.
Required input for optimization algorithm, default = 0.20.

confidence
The probability cut-off value for candidate contamination incidents using the bayesian algorithm.
The value is between 0 and 1.
Required for the bayesian algorithm, default = 0.95.

output impact nodes
A option to output a Likely_Nodes.dat file that contains only the node IDs of the possible
contaminant injection nodes obtained from the inversion subcommand. This file can be used as
the feasible nodes for the next iteration of the inversion subcommand to only consider this set
of possible contaminant injection nodes.
Optional input, default = false.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.
Required input.

options
A list of options associated with a specific solver type.

98

Optional input.
logfile

The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes
A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

8.3.3 Subcommand Output

The inversion subcommand creates several output files, The YAML file called <output pre-
fix>inversion_output.yml that contains a list of possible source node locations (EPANET node IDs), the
associated objective or probability value (node likeliness) for each possible source node (a higher value indi-
cates a higher likelihood of that node being the true contaminant injection node), the injection profiles (start
and end times and the strength) for each possible source node, the run date and CPU time. The log file
called <output prefix>inversion_output.log contains basic debugging information. The inversion subcom-
mand also outputs an <output prefix>_profile.tsg file that contains the list of likely injection profiles in the
TSG file format (See File Formats Section 12.12). As discussed in Chapter 9, this TSG file can be directly
used as an input by the grabsample subcommand. A visualization YAML configuration file named <output
prefix>inversion_output_vis.yml is also created. The visualization subcommand is automatically run
using this YAML file.

8.4 Source Identification Examples

Two examples illustrating the use of the different source inversion formulations are presented. In the first
example, the optimization formulation is used to solve a source identification problem, while the second
example uses the Bayesian probability formulation to solve the same problem.

99

8.4.1 Example 1

An EPANET network model (INP format) and a measurements file (See File Formats Section 12.7) are
required to run the inversion subcommand. The configuration file, inversion_ex1.yml, shown in Fig-
ure 8.4 is used to identify the possible contaminant source locations. The MIP optimization formulation,
MIP_discrete_step, is used for this example. The EPANET Example Network 3 input file, Net3.inp, is
used as the network file. The network runs a two day hydraulic and water quality simulation. The example
also uses the Net3_MEASURES.dat file, which contains the sensor measurements based upon simulating
an injection at node 151 from 8 hours and until 24 hours and converting concentrations at five optimally
selected fixed sensor locations into binary measurements.

network:
epanet file: Net3/Net3.inp

measurements:
grab samples: Net3/Net3_MEASURES.dat

inversion:
algorithm: optimization
formulation: MIP_discrete_step
model format: PYOMO
horizon: null
num injections: 1.0
measurement failure: 0.05
positive threshold: 100.0
negative threshold: 0.1
feasible nodes: null
candidate threshold: 0.25
confidence: 0.95
output impact nodes: false

solver:
type: ’glpk’
options:
logfile: null
verbose: 0
initial points: []

configure:
output prefix: inversion_ex1/Net3
debug: 0

Figure 8.4: The inversion configuration file for example 1.

The example can be executed using the following command line:
wst inversion inversion_ex1.yml

The results are contained in the file Net3inversion_output.yml. A section of this results file is shown in
Figure 8.5. The results contain a list of sets where each set contains - possible contaminant source node
in the Nodes list (which contains a node Name and a Profile), CPU computation time in seconds and the
Objective value corresponding to the solution which identifies that node as the source node. The Objective
value for each candidate node n in the results file is related to the objective of the MIP formulations 8.1.1
(Equation 8.1). The objective calculated from the MIP formulation is transformed such that it is normalized
to 1 and a higher value mean a higher likelihood of a node being the source node. This transformation is
done by the following equations:

INV_NORM_OBJn = 1− FORM_OBJn
max(FORM_OBJ)

∀n ∈ N (8.12)

Objectiven = INV_NORM_OBJn
max(INV_NORM_OBJ)

∀n ∈ N (8.13)

where FORM_OBJn (Formulation Objective) is the objective value as calculated from the MIP formulation

100

Equation 8.1 when node n is identified as the most likely node, INV_NORM_OBJn is an intermediate
variable that represents one (1) minus the normalized formulation objective and Objectiven is the normalized
form of the INV_NORM_OBJn which is reported in the inversion subcommand results file.

This results file only contains the list of possible contaminant source nodes that have an objective (as calcu-
lated by 8.13) greater than the candidate threshold provided in the inversion block of the WST configuration
file.

inversion output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 391.834 # CPU time (sec)
directory: C:/WST-1.2/examples/inversion_ex1
log file: Net3inversion_output.log # Log file

inversion:
tsg file: inversion_ex1/Net3_profile.tsg
likely nodes file: inversion_ex1/Net3_Likely_Nodes.dat
candidate nodes: [’[’’149’’]’, ’[’’151’’]’, ’[’’153’’]’, ’[’’125’’]’, ’[’’123’’]’, ’[’’121’’]’]

List of candidate injection nodes
node likeliness: [1.0, 1.0, 1.0, 0.962, 0.298, 0.274] # Likeliness measure of each node

being true injection node.

Figure 8.5: The inversion YAML output file for example 1.

For this example scenario, the inversion subcommand is able to correctly identify node 151 as one of the
three most likely source nodes. This means that given the current measurement information available, nodes
151, 153 and 149 are equally likely. Further measurements can be obtained from selected grab sampling
locations that can help in distinguishing between these three potential source nodes. An example of how
to use the grabsample subcommand to optimally select grab sampling location to improve distiguishability
between potential sources is provided in the inversion case study 11.3.

8.4.2 Example 2

In this example, the Bayesian probability formulation is used to solve the same problem described in example
1. The configuration file, inversion_ex2.yml, shown in Figure 8.6, is used for this example. The bayesian
formulation is selected by using the algorithm option in the inversion block.

The example can be executed using the following command line:
wst inversion inversion_ex2.yml

The results are contained in the file Net3inversion_output.yml shown in Figure 8.7. The likeliness value
reported in this file corresponds to the probability value calculated by Equation 8.10. The probability
algorithm is also able to correctly identify node 151 as the one of the three most probable source nodes along
with nodes 149 and 153.

101

network:
epanet file: Net3/Net3.inp

measurements:
grab samples: Net3/Net3_MEASURES.dat

inversion:
algorithm: bayesian
formulation: MIP_discrete_step
model format: PYOMO
horizon: null
num injections: 1.0
measurement failure: 0.05
positive threshold: 100.0
negative threshold: 0.1
feasible nodes: null
candidate threshold: 0.2
confidence: 0.95
output impact nodes: false

solver:
type: ’gurobi’
options:
logfile: null
verbose: 0
initial points: []

configure:
output prefix: inversion_ex2/Net3
debug: 0

Figure 8.6: The inversion configuration file for example 2.

inversion output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 0.365 # CPU time (sec)
directory: C:/WST-1.2/examples/inversion_ex2
log file: Net3inversion_output.log # Log file

inversion:
tsg file: inversion_ex2/Net3_profile.tsg
likely nodes file: inversion_ex2/Net3_Likely_Nodes.dat
candidate nodes: [’149’, ’151’, ’153’] # List of candidate injection nodes
node likeliness: [0.333107, 0.333107, 0.333107] # Likeliness measure of each node

being true injection node.

Figure 8.7: The inversion YAML output file for example 2.

102

Chapter 9

Grab Sampling

When source inversion is performed following initial detection of a contamination incident, it is likely that
the identified set of possible injection locations is fairly large due to the limited measurement information
available at the early stages of detection. As time progresses, more measurements become available to help
decrease the number of possible injection locations. It is possible to obtain additional measurements in
the form of grab samples from optimally selected locations that can help in quickly narrowing down the
set of likely incident locations when source inversion calculations are performed again. The grabsample
subcommand can be used to identify optimal grab sample locations that could help reduce the number of
possible injection locations identified from the inversion subcommand.

A flowchart representation of the grabsample subcommand is shown in Figure 9.1. The required input for
the grabsample subcommand include a utility network model specified with an EPANET compatible input
file (INP) and a list of likely injection scenarios.

inversion/grabsample

 Utility Network
Model Measurements

Source Inversion

Likely Injection
Scenarios

inversion

 Utility Network
Model

Grab Sampling

Grab Sample
Locations

Likely Injection
Scenarios

Figure 9.1: Grab sampling flowchart.

9.1 Grab Sampling Formulation

Considering two possible contamination incidents i and j, if a particular sample location is impacted by
incident i, but not impacted by incident j, then this sample location is able to distinguish between the
two incidents. The grabsample subcommand can be used to identify grab sample locations that maximize
the number of pairwise distinguishable incidents in a list of possible contamination incidents. The <output
prefix>profile.tsg obtained from the inversion subcommand contains a list of possible injection locations.
The data sets required by the optimization formulation below are obtained by simulating each possible
incident using the EPANET hydraulics model and the Merlion water quality model (Mann et al., 2012b).

103

The grab sampling problem formulation is:

maximize
∑

(i,j)∈PE

dij (9.1)

subject to
∑
n∈Dij

sn ≥ dij ∀ (i, j) ∈ PE (9.2)

∑
n∈G

sn ≤ Smax + |F | (9.3)

sn ∈ {0, 1} ∀n ∈ G (9.4)
sn = 1 ∀n ∈ F (9.5)
0 ≤ dij ≤ 1 ∀ (i, j) ∈ PE (9.6)

where G is the set of all grab sample locations, F is the set of fixed sensor locations and PE is the pairwise
set of all candidate incidents (i.e., possible contamination incidents). The variable Dij is the set of sample
locations that distinguish incident i from incident j, Smax is the maximum number of samples that can be
taken at the same time (i.e., number of sampling teams), sn is a binary variable that is 1 if node n is sampled
and 0 otherwise and dij is continuous variable that will be 1 if incident i is distinguishable from incident j
and 0 otherwise.

Equation 9.1 represents the mixed-integer programming (MIP) objective which maximizes the number of
pairwise distinguishable incidents. Equation 9.2 requires that at least one or more sample locations be
selected for a distinguished incident. Equation 9.3 limits the number of selected locations to be less than
the number of sampling teams. Equation 9.4 defines sn as a binary variable. Equation 9.5 ensures that the
fixed sensor locations are always sampled since measurements from these fixed sensors are always available,
which avoids double counting distinguished incidents.

9.2 Grab Sampling Solvers

The grabsample subcommand requires standard MIP solvers to identify optimal grab sample locations.
The solvers recognized by the grabsample subcommand are the same as those recognized by booster_mip
subcommand (See Section 7.2.3 for more details).

9.3 grabsample Subcommand

The grabsample subcommand is executed using the following command line:
wst grabsample <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst grabsample --help

9.3.1 Configuration File

The grabsample subcommand generates a template configuration file using the following command line:
wst grabsample --template <configfile>

The grabsample template configuration file is shown in Figure 9.2. Brief descriptions of the options are
included in the template after the # sign.

104

The grabsample subcommand requires likely scenarios, which are set in the scenario block. These scenarios
must be defined using a TSG file or by specifying the scenario location, type, strength, start and stop
times (see Section 3.2 for more information on defining scenarios). In general, the TSG file created by the
inversion subcommand will be used to define likely scenarios. EPANET-MSX options are not used by
grabsample and Merlion is always used as the water quality model.

grabsample configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: null # Injection location: ALL, NZD or EPANET ID
type: null # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: null # Injection strength [mg/min or mg/L depending on type]
species: null # Injection species, required for EPANET-MSX
start time: null # Injection start time [min]
end time: null # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

grabsample:
model format: PYOMO # Grab sample model format: AMPL or PYOMO
sample time: 720.0 # Sampling time (min)
threshold: null # Contamination threshold. Default 0.001
fixed sensors: null # Fixed sensor nodes
feasible nodes: null # Feasible sampling nodes
num samples: null # Maximum number of grab samples, default = 1
greedy selection: false # Perform greedy selection. No optimization

solver:
type: glpk # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 9.2: The grabsample configuration template file.

9.3.2 Configuration Options

Full descriptions of the WST configuration options used by the grabsample subcommand are listed below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

scenario
location

A list that describes the injection locations for the contamination scenarios. The options are:
(1) ALL, which denotes all nodes (excluding tanks and reservoirs) as contamination injection
locations; (2) NZD, which denotes all nodes with non-zero demands as contamination injection
locations; or (3) an EPANET node ID, which identifies the node where contamination is intro-
duced. This allows easy specification of single or multiple contamination scenarios.
Required input unless a TSG or TSI file is specified.

105

type
The injection type for the contamination scenarios. The options are MASS, CONCEN, FLOW-
PACED or SETPOINT. See the EPANET manual for additional information about source types
(Rossman, 2000).
Required input unless a TSG or TSI file is specified.

strength
The amount of contaminant injected into the network for the contamination scenarios. If the type
option is MASS, then the units for the strength are in mg/min. If the type option is CONCEN,
FLOWPACED or SETPOINT, then units are in mg/L.
Required input unless a TSG or TSI file is specified.

species
The name of the contaminant species injected into the network. This is the name of a single
species. It is required when using EPANET-MSX, since multiple species might be simulated, but
only one is injected into the network. For cases where multiple contaminants are injected, a TSI
file is needed.
Required input for EPANET-MSX unless a TSG or TSI file is specified.

start time
The injection start time that defines when the contaminant injection begins. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 60 represents
an injection that starts at hour 1 of the simulation.
Required input unless a TSG or TSI file is specified.

end time
The injection end time that defines when the contaminant injection stops. The time is given in
minutes and is measured from the start of the simulation. For example, a value of 120 represents
an injection that ends at hour 2 of the simulation.
Required input unless a TSG or TSI file is specified.

tsg file
The name of the TSG scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSG file will override the location, type, strength, species, start and end
times options specified in the WST configuration file. The TSG file format is documented in File
Formats Section 12.12.
Optional input.

tsi file
The name of the TSI scenario file that defines the ensemble of contamination scenarios to be
simulated. Specifying a TSI file will override the TSG file, as well as the location, type, strength,
species, start and end time options specified in the WST configuration file. The TSI file format
is documented in File Formats Section 12.13.
Optional input.

msx file
The name of the EPANET-MSX multi-species file that defines the multi-species reactions to be
simulated using EPANET-MSX.
Required input for EPANET-MSX.

msx species
The name of the MSX species whose concentration profile will be saved by the EPANET-MSX
simulation and used for later calculations.
Required input for EPANET-MSX.

merlion

106

A flag (true or false) to indicate if the Merlion water quality simulator should be used. If an MSX
file is provided, EPANET-MSX will be used.
Required input, default = false.

grabsample
model format

The modeling language used to build the formulation specified by the model format option. The
options are AMPL and PYOMO. AMPL is a third party package that must be installed by the
user if this option is specified. PYOMO is an open source software package that is distributed
with WST.
Required input, default = PYOMO.

sample time
The time at which the manual grab sample is should be taken. The algorithm determines the
best possible manual grab sample location(s) based upon this time. Units: Minutes from the
simulation start time in the EPANET INP file.
Required input.

threshold
This threshold determines whether or not an incident impacts a candidate sample location.
Required input, default = 0.001.

fixed sensors
A list that defines nodes that are already fixed continuous sensor locations. The options are: (1)
ALL, which specifies all nodes as fixed sensor locations; (2) NZD, which specifies non-zero demand
nodes as fixed sensor locations; (3) NONE, which specifies no nodes as fixed sensor locations; (4)
a list of EPANET node IDs, which identifies specific nodes as fixed sensor locations; or (5) a
filename, which is a space or comma separated file containing a list of specific nodes as fixed
sensor locations.
Optional input.

feasible nodes
A list that defines nodes that can be considered as potential sampling locations for the optimal
sample location problem. The options are: (1) ALL, which specifies all nodes as feasible sampling
locations; (2) NZD, which specifies all non-zero demand nodes as feasible sampling locations; (3)
a list of EPANET node IDs, which identifies specific nodes as feasible sampling locations; or (4)
a filename, which is a space or comma separated file containing a list of specific nodes as feasible
sampling locations.
Optional input.

num samples
The maximum number of locations that can be sampled at one time. This is usually equal to the
number of sampling teams that are available.
Required input, default = 1.

greedy selection
The option to select manual grab sample locations based upon a greedy search. This does not
require any optimization.
Optional input.

solver
type

The solver type. Each component of WST (e.g., sensor placement, flushing response, booster
placement, source identification and grab sample) has different solvers available and more specific
details are provided in the component’s chapter.

107

Required input.
options

A list of options associated with a specific solver type.
Optional input.

logfile
The name of a file to output the results of the solver.
Optional input.

verbose
The solver verbosity level.
Optional input, default = 0 (lowest level).

initial points
nodes

A list of node locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response and booster_msx
placement.
Optional input.

pipes
A list of pipe locations (EPANET IDs) to begin the optimization process. Currently, this
option is only supported for the network solver used in the flushing response.
Optional input.

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

9.3.3 Subcommand Output

The grabsample subcommand creates a YAML file called <output prefix>grabsample_output.yml that
contains a list of node locations (EPANET node IDs) to take manual grab samples, the objective value
which represents the number of pairwise incidents that will be distinguished by the grab samples, the run
date and CPU time. The log file named <output prefix>grabsample_output.log contains basic debugging
information. A visualization YAML configuration file named <output prefix>grabsample_output_vis.yml
is also created. The visualization subcommand is automatically run using this YAML file.

9.4 Grab Sampling Example

An EPANET network model (INP format) and a file containing a list of possible injection scenarios (e.g.,
a TSG file which is generated by the inversion subcommand) to run the grabsample subcommand. The
configuration file for this example, grabsample_ex1.yml, is shown in Figure 9.3. The EPANET Example
Network 3 INP file, Net3.inp, is used for this example. A list of eight equally likely contamination injection
locations are defined in the Net3_gs_profile.tsg file. The information in this file was obtained by simulating
a contaminant injection at node 251 at 24 hours, detecting the injection at 30.5 hours by using a set of fixed
sensor locations defined in the Net3_grabsample_fixed_sensors file, and identifying possible contamination
injection locations by using the inversion subcommand with the Bayesian algorithm defined in Section

108

8.1.2. The sample time is set to 1890 minutes (31.5 hours), since it is assumed that it takes 60 minutes to
perform source inversion and obtain the samples (including travel time). The maximum number of samples
that can be taken is two.

network:
epanet file: Net3/Net3.inp

scenario:
location: null
type: null
strength: null
species: null
start time: null
end time: null
tsg file: Net3/Net3_gs_profile.tsg
tsi file: null
msx file: null
msx species: null
merlion: false

grabsample:
model format: PYOMO
sample time: 1890.0
threshold: null
fixed sensors: Net3/Net3_grabsample_fixed_sensors
feasible nodes: null
num samples: 2
greedy selection: false

solver:
type: glpk
options: {}
logfile: null
verbose: 0
initial points: []

configure:
output prefix: grabsample_ex1/Net3
debug: 0

Figure 9.3: The grabsample configuration file for example 1.

The example can be executed using the following command:
wst grabsample grabsample_ex1.yml

The results are available in the Net3grabsample_output.yml, which is shown in Figure 9.4. The grab
sampling locations identified are nodes 241 and 251. Twenty-three pairwise incidents will be distinguished
after taking the samples at these locations. To reiterate the configuration parameters, the sampling time
is 1890 minutes and the maximum number of sampling locations is two. The grab sampling locations
identified in Figure 9.4 might be one of several solutions that produce the same objective value. If multiple
grab sampling locations provide the same ability to distinguish the contamination source, the solver will
randomly pick a solution. Thus, the solution identified in Figure 9.4 could be different for other users.

109

grabsample output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 0.369 # CPU time (sec)
directory: C:/WST-1.2/examples/grabsample_ex1
log file: Net3grabsample_output.log # Log file

grabsample:
nodes: [’247’, ’251’] # List of grabsample nodes
objective: 23.0 # Objective value
threshold: null # Threshold
count: 2 # Count
time: 1890.0 # Time

Figure 9.4: The grabsample YAML output for example 1.

110

Chapter 10

Visualization

Visualization tools are an important aspect of network analysis. For example, after completing a sensor
placement optimization, it is important to understand how the physical location of the sensors relates to
the underlying structure of the water distribution network. The visualization subcommand overlays
graphical layers on a water distribution network and creates a HyperText markup language (HTML) file
with scalar vector graphics that can be opened in a Web browser. The graphic can be used in presentations
and documents by saving the screen image as a graphics file (e.g., PNG, JPEG). After the HTML file is
opened in a Web browser, the user has the ability to (1) scroll over node and link elements to identify the
respective EPANET ID, (2) scroll over the legend to isolate a specific layer, (3) move the legend and (4)
zoom or pan the screen to change the size and location of the network.

The visualization subcommand includes an extensive number of graphic options. To format the appear-
ance of the network model, the user can define the color, size and opacity for the network elements (e.g.,
junctions, reservoirs, tanks, pipes, pumps and valves). The user can also decide which network elements
to include in the legend. Multiple node and link layers can then overlay the network model. The order of
those layers is defined by the user. For each layer, the user can select the layer shape (for node layers) along
with the color, size and opacity. The color, size and opacity can be defined as a constant or can be set as a
function of the layers value. These options can be set independently for the layers fill and line. Each layer is
assigned a label to be used in the legend. Other options include the screen size and background color, and
the legend location and background color.

Several WST subcommands automatically run the visualization subcommand upon completion to gener-
ate sample graphics. These include sp, flushing, booster_msx, booster_mip, inversion and grabsample.
The graphic can be modified by editing the visualization configuration file, which is also automatically gen-
erated, and rerunning the visualization subcommand. A flowchart representation of the visualization
subcommand is shown in Figure 10.1. The utility network model is defined by an EPANET compatible
network model (INP format). Graphic options are supplied through the visualization WST configuration
file.

111

Contaminant
Transport

 Utility Network
Model

Simulation
Input

 Threat Ensemble
Database

Impact
Assessment

 Threat Ensemble
Database

Consequences
Input

Impact File

Sensor
Placement

Impact File

Sensor Locations

Sensor
Characteristics

tevasim

sim2Impact

sp

Visualization

 Utility Network
Model

Graphic
Options

 HTML graphics
 file

visualization

Figure 10.1: Visualization flowchart.

10.1 Color and Shape Options

Color is specified using a six character hexadecimal (HEX) color code or using a predefined color name. HEX
color codes can be found at various website, including http://www.color-hex.com/color-wheel/, and can
be used to create any color between black (#000000) and white (#FFFFFF). The following predefined colors
can also be used in the the visualization subcommand.

Name RGB HEX
==

red [225,0,0] \#FF0000
orange [225,165,0] \#FFA500
yellow [225,225,0] \#FFFF00
green [0,128,0] \#008000
blue [0,0,225] \#0000FF
purple [128,0,128] \#800080
black [0,0,0] \#000000
white [225,225,225] \#FFFFFF
lime [0,225,0] \#00FF00
navy [0,0,128] \#000080
aqua [0,225,225] \#00FFFF
teal [0,128,128] \#008080
olive [128,128,0] \#808000
maroon [128,0,0] \#800000
fuchsia [225,0,225] \#FF00FF
silver [192,192,192] \#C0C0C0
gray [128,128,128] \#808080

Shape is specified using one of the following predefined shapes, using either the long or short name.
Long Name Short Name

===========================
circle o
square s
triangle t
diamond d
plus +
x x

10.2 Data from YAML Files

Within the visualization WST configuration file, layer attributes can be defined by (1) directly including
the attribute values, or (2) referencing data in an external YAML file.

The following subset of a visualization WST configuration file demonstrates how attribute values are

112

http://www.color-hex.com/color-wheel/

directly included in the layers block.
layers:

locations: [’115’, ’101’, ’171’]
file: null

The same data can be stored in an external YAML file and referenced in the visualization WST configu-
ration file, as shown below.

layers:
locations: ’[’’flushing’’][’’nodes’’][i]’
file: data.yml

In this example, the file ’data.yml’ contains the following information.
flushing:

nodes: [’115’, ’101’, ’171’]

The WST subcommands (e.g., sp, flushing) that automatically run the visualization subcommand upon
completion read data from external YAML files.

10.3 visualization Subcommand

The visualization subcommand is executed using the following command line:
wst visualization <configfile>

where configfile is a WST configuration file in the YAML format.

The –-help option prints information about this subcommand, such as usage, arguments and a brief de-
scription:

wst visualization --help

10.3.1 Configuration File

The visualization subcommand generates a template configuration file using the following command line:
wst visualization --template <configfile>

The visualization WST template configuration file is shown in Figure 10.2. Brief descriptions of the
options are included in the template after the # sign.

113

visualization configuration template
network:

epanet file: Net3.inp # EPANET network file name
visualization:

screen:
color: white # Screen color, HEX or predefined code
size: [1200, 800] # Screen size [width, height] in pixels

legend:
color: white # Legend color, HEX or predefined code
scale: 1.0 # Legend text size multiplier, float
location: [800, 20] # Legend location [left, bottom] in pixels

nodes:
color: null # Node color, HEX or predefined code
size: null # Node size, float
opacity: 0.6 # Node opacity, float between 0.0 and 1.0

links:
color: null # Link color, HEX or predefined code
size: null # Link size, float
opacity: 0.6 # Link opacity, float between 0.0 and 1.0

layers:
-

label: pipes with different colors # Label used in legend
locations: [’101’, ’171’] # Data locations, list of EPANET IDs
file: null # Locations from file, yaml format
location type: link # Location type, node or link
shape: [circle] # Marker shape, predefined name
fill:

color: [yellow, red] # Fill color, HEX or predefined code
size: [10, 20] # Fill size, float
opacity: [0.5, 1] # Fill opacity, float between 0.0 and 1.0
color range: null # Fill color range [min, max]
size range: null # Fill size range [min, max]
opacity range: null # Fill opacity range [min, max]

line:
color: null # Line color, HEX or predefined code
size: null # Line size, float
opacity: 0.6 # Line opacity, float between 0.0 and 1.0
color range: null # Line color range [min, max]
size range: null # Line size range [min, max]
opacity range: null # Line opacity range [min, max]

-
label: orange nodes # Label used in legend
locations: [’105’, ’35’, ’15’] # Data locations, list of EPANET IDs
file: null # Locations from file, yaml format
location type: node # Location type, node or link
shape: [diamond] # Marker shape, predefined name
fill:

color: orange # Fill color, HEX or predefined code
size: 10 # Fill size, float
opacity: 0.6 # Fill opacity, float between 0.0 and 1.0
color range: null # Fill color range [min, max]
size range: null # Fill size range [min, max]
opacity range: null # Fill opacity range [min, max]

line:
color: black # Line color, HEX or predefined code
size: 1 # Line size, float
opacity: 1 # Line opacity, float between 0.0 and 1.0
color range: null # Line color range [min, max]
size range: null # Line size range [min, max]
opacity range: null # Line opacity range [min, max]

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

Figure 10.2: The visualization configuration template file.

114

10.3.2 Configuration Options

Full descriptions of the WST configuration options used by the visualization subcommand are listed
below.

network
epanet file

The name of the EPANET input (INP) file that defines the water distribution network model.
Required input.

visualization
screen

color
The screen background color defined using a HEX color code or predefined color name.
Optional input, default = white

size
The screen size [width, height] in pixels.
Optional input, default = [1000,600]

legend
color

The legend background color defined using a HEX color code or predefined color name.
Optional input, default = white

scale
The legend text size multiplier, floating point value.
Optional input, default = 1.0

location
The legend location [left, top] in pixels.
Optional input, default = [10,10] (upper left)

nodes
color

The node color defined using HEX color code or predefined color name. The color will apply
to junctions, reservoirs and tanks. If the color is left blank, then junctions are black, reservoirs
are blue and tanks are green.
Optional input, default = None

size
The node size, floating point value.
Optional input.

opacity
The node opacity, floating point value between 0.0 (transparent) and 1.0 (opaque).
Optional input, default = 0.6

links
color

The link color defined using HEX color code or predefined color name. The color will apply
to pipes, pumps and valves. If the color is left blank, then pipes are black, pumps are yellow
and valves are turquoise.
Optional input, default = None

115

size
The link size, floating point value.
Optional input.

opacity
The link opacity, floating point value between 0.0 (transparent) and 1.0 (opaque).
Optional input, default = 0.6

layers
label

The layer label used in the legend.
Optional input, default = None

locations
The data locations to plot over the network. Locations are specified using a list of EPANET
IDs.
Required input unless an external file is specified.

file
The name of an external file that contains data to be used in the visualization. The file is in
YAML format.
Required input unless ’locations’ are specified. Data from a file overrides data specified in
’locations’

location type
The location type is used to indicate if the EPANET ID is of type ’node’ (junction, reservoir,
tank) or ’link’ (pipe, pump, valve).
Optional input. If left blank, node is tested before link

shape
The marker shape, used only for node type layers. The shape can be a single string, or a list
of strings which is the same length as the location data.
Optional input, only used for node type layers, default = circle

fill
color

The fill color defined using HEX color code or predefined color name.
Optional input, default = None

size
The fill size, floating point value.
Optional input.

opacity
The fill opacity, floating point value between 0.0 (transparent) and 1.0 (opaque).
Optional input, default = 0.6

color range
The fill color range used to scale line data.
Optional input, default = [data min, data max]

size range
The fill size range used to scale line data.
Optional input, default = [data min, data max]

opacity range
The fill opacity range used to scale line data.

116

Optional input, default = [data min, data max]
line

color
The line color defined using HEX color code or predefined color name.
Optional input, default = None

size
The line size, floating point value.
Optional input.

opacity
The fill opacity, floating point value between 0.0 (transparent) and 1.0 (opaque).
Optional input, default = 0.6

color range
The line color range used to scale line data.
Optional input, default = [data min, data max]

size range
The line size range used to scale line data.
Optional input, default = [data min, data max]

opacity range
The line opacity range used to scale line data.
Optional input, default = [data min, data max]

configure
output prefix

The prefix used for all output files.
Required input.

debug
The debugging level (0 or 1) that indicates the amount of debugging information printed to the
screen, log file, and output yml file.
Optional input, default = 0 (lowest level).

For additional control over the way that junctions, reservoir, tanks, pipes, pumps and valves are displayed,
the following YAML blocks can be added to the visualization configuration block. The color, size and opacity
of each element can be changed; and the element can be added to the legend. These options will override
the node and link blocks.

junctions:
color: red
size: 5.0
opacity: 0.5

reservoirs:
color: orange
size: 12.0
opacity: 1

tanks:
color: yellow
size: 12.0
opacity: 1

pipes:
color: green
size: 3.0
opacity: 0.5

pumps:
color: blue

117

size: 3.0
opacity: 1

valves:
color: purple
size: 3.0
opacity: 0.7

10.3.3 Subcommand Output

The visualization subcommand creates a HTML file named <output prefix>visualization_output.html
that contains scalar vector graphics that can be opened in a Web browser. Two other files are created: (1)
an output YML file named <output prefix>visualization_output.yml that includes run date and CPU time,
and (2) a log file named <output prefix>visualization_output.log that includes basic debugging information.

10.4 Visualization Examples

An EPANET network model (INP format) and a configuration file, which contain the graphics options, are
required to run the visualization subcommand. Several examples for visualization are given below.

10.4.1 Example 1

The first example customizes the color, size and opacity of the network elements (junctions, reservoirs,
tanks, pipes and pumps). The reservoir and tank color is specified using HEX color codes. Additionally, the
graphic highlights five pipes and uses their diameter to scale the pipe width. All the data is supplied in the
configuration file. The configuration file, visualization_ex1.yml, for this example is shown in Figure 10.3.

The example can be executed using the following command line:
wst visualization visualization_ex1.yml

The resulting graphic is shown in Figure 10.4.

118

network:
epanet file: Net3/Net3.inp

visualization:
screen:

color: white
size: [1600, 1000]

legend:
color: white
scale: 2.0
location: [20, 20]

junctions:
color: black
size: 5.0
opacity: 0.5

reservoirs:
color: ’#a0b0f8’
size: 18.0
opacity: 1

tanks:
color: ’#3ec427’
size: 18.0
opacity: 1

pipes:
color: black
size: 1.0
opacity: 0.5

pumps:
color: maroon
size: 10.0
opacity: 1

layers:
label: Five Pipes
locations: [’145’, ’287’, ’155’, ’231’, ’175’]
file: null
location type: link
shape: circle
fill:

color: red
size: [8, 10, 12, 24, 30]
opacity: 1
color range: null
size range: null
opacity range: null

configure:
output prefix: visualization_ex1/Net3
debug: 0

Figure 10.3: The visualization configuration file for example 1.

119

Five Pipes

Figure 10.4: Graphic from visualization example 1.

120

10.4.2 Example 2

The second example uses an external data file to define locations and values to be used in the network graphic.
The configuration file, visualization_ex2.yml, for this example is shown in Figure 10.5. The location file
used in this example is shown in Figure 10.6. This example uses the pipe length to scale the size and opacity
of the links and the base demand to scale the color and size of the nodes. This graphic shows that link 329
is very long compared with other 30 inch diameter pipes and that node 109 has the largest base demand.

network:
epanet file: Net3/Net3.inp

visualization:
screen:

color: white
size: [1600, 1000]

legend:
color: white
scale: 2.0
location: [20, 20]

layers:
- label: 30 inch diameter pipes

locations: ’[’’links’’][i]’
file: Net3/Net3_locations.yml
location type: link
shape: circle
fill:

color: blue
size: ’[’’length’’][i]’
opacity: ’[’’length’’][i]’
color range: null
size range: [5,20]
opacity range: [0.5,1]

- label: Nodes with base demand > 100
locations: ’[’’nodes’’][i]’
file: Net3/Net3_locations.yml
location type: node
shape: circle
fill:

color: ’[’’base demand’’][i]’
size: ’[’’base demand’’][i]’
opacity: 1
color range: [orange, red]
size range: [15,35]
opacity range: null

configure:
output prefix: visualization_ex2/Net3
debug: 0

Figure 10.5: The visualization configuration file for example 2.

nodes: [109, 101, 119, 151, 111, 105, 103, 199, 117, 189]
base demand: [231.4, 189.95, 176.13, 144.48, 141.94, 135.37, 133.2,

119.32, 117.71, 107.92]
links: [123, 125, 173, 175, 177, 179, 183, 187, 189, 321, 329, 330, 333]
length: [2000, 1500, 2080, 2910, 2000, 430, 590, 1270, 50, 1200, 45500, 1, 1]

Figure 10.6: The location file used in visualization example 2.

The example can be executed using the following command line:
wst visualization visualization_ex2.yml

121

The resulting graphic is shown in Figure 10.7.

30 inch diameter pipes

Nodes with base demand > 100

Figure 10.7: Graphic from visualization example 2.

122

Chapter 11

Advanced Topics and Case Studies

This chapter provides more background information on the Merlion water quality model and discusses a few
of the more advanced topics for the sensor placement problem. In addition, a few case study applications
using the different WST subcommands are provided.

11.1 Merlion Water Quality Model

The Merlion water quality model formulation ensures mass balances at all junctions, pipes and tanks. The
following mass balance equations describe the transport of a species inside the network. For simplicity,
complete instantaneous mixing is assumed for the tanks, and plug flow is assumed for the pipes.

cn(t) =
∑
i∈ΓOn (t)Qi(t)ĉOi (t)−

∑
i∈ΓIn(t)Qi(t)ĉIi (t) +mn(t)∑

i∈ΓOn (t)Qi(t)−
∑
i∈ΓIn(t)Qi(t) +Qextn (t)

, ∀ n ∈ J (11.1)

Vn(t)
dcn(t)
dt

=
∑

i∈ΓOn (t)

Qi(t)ĉOi (t)−
∑

i∈ΓIn(t)

Qi(t)ĉIi (t) +mn(t)

−

 ∑
i∈ΓOn (t)

Qi(t)−
∑

i∈ΓIn(t)

Qi(t) +Qextn (t)

 cn(t), ∀ n ∈ ST (11.2)

∂ĉi(x, t)
dt

+ ui(t)
∂ĉi(x, t)
dx

= 0,∀i ∈ P (11.3)

where cn and mn denotes the concentration and mass injected, respectively. The variable J is a set of all
junctions, ST is a set of all storage tanks, and P is a set of all pipes. The variable Q denotes volumetric
flowrates that are pre-calculated using EPANET and are assumed to be piecewise constant for each time
interval. The flowrate of a known external source entering a node is also pre-calculated and is denoted by
Qexti . The variable ΓOn represents the set of all pipes with flow going away from node n. Similarly, ΓIn
represents the set of all pipes with flow coming into node n.

Equation 11.1 represents a set of algebraic equations dependent on time alone and Equation 11.2 represents
a set of ODEs also dependent on time alone. Therefore, these two equations can be discretized in time.
However, discretizing Equation 11.3, which are PDEs, in both time and space would lead to a prohibitively
large model. Instead, these pipe balance PDEs are replaced using an origin-tracking algorithm. This al-
gorithm is based on the Lagrangian method; however, instead of tracking concentration values as packets

123

of water moving through the network, the origin-tracking algorithm tracks the originating node and time
step of each packet as it enters a pipe (see Figure 11.1). Once the water packet exits the pipe, equations
are written relating the concentration of the pipe inlet and outlet to the concentration of connected nodes
based on time delay. These time delay expressions are formulated for each pipe independently. Therefore,
the algorithm scales favorably for a large water distribution system having a linear computational cost as
the size of the network increases.

BA

Flow direction

	�������	�� = A
�����
���	����� = 1

BA

	�������	�� = A
�����
���	����� = 1

Timestep

t = 1

t = 3

t = 5 A

	�������	�� = A
�����
���	����� = 1

B

.

.

.

.

.

.

Equations

ĉ(x = Ii(t1), t1) = ĉA(t1)
ĉ(x = Oi(t1), t1) = 0

ĉ(x = Ii(t5), t5) = ĉA(t5)
ĉ(x = Oi(t5), t5) = ĉA(t1)

Figure 11.1: Illustration of the origin tracking algorithm.

The time delay expressions are included in the mass balance equations to form a large but very sparse linear
system relating input injections (m) from all nodes and time steps to output concentrations (c) from all
nodes and time steps.

Gc = Dm (11.4)

Unlike black box simulations, this linear model can be extended and embedded inside other numerical
applications. For example, the water quality model can be embedded inside a mathematical programming
formulation for applications like booster placement, source inversion and optimal grab sampling.

After formulating the linear system, performing a tracing simulation is straightforward. First, an injection
profile (m) is specified. Then, the system is factorized and finally backsolved for the network concentration
profile c. This process is fast, and even more efficient when simulating a large ensemble of tracing simulations.
In this case, the system is factorized once, and a backsolve is performed for each simulation. To get additional
speedup, a tailored solver is also provided that takes advantage of the structure of the linear system by
permuting matrix G into lower triangular, which removes the need for any factorization. The tailored
solver also utilizes the Basic Linear Algebra Sub-routines (BLAS) library to perform multiple backsolves
(corresponding to multiple injection scenarios) more efficiently. For additional information about Merlion,
refer to Mann et al. (2012a).

124

11.2 Average-case Sensor Placement

The sp subcommmand can design a sensor network for contamination warning systems (CWSs) using a
variety of different optimization formulations. The most widely studied sensor placement formulation for
CWS design is to minimize the expected impact of an ensemble of contamination incidents given a sensor
budget. This formulation has also become the standard formulation for sp, because it can be effectively used
to select sensor placements in large water distribution networks. This chapter provides a variety of examples
that illustrate the application of the sp subcommand for this optimization formulation. Sensor placement
formulation and examples illustrating common use of sp are included in Chapter 5.

11.2.1 Computing a Bound on the Best Sensor Placement Value

A mixed-integer program (MIP) solver like GLPK provide upper and lower bounds on the value of the final
solution. For large water distribution systems, it might be prohibitively expensive to perform optimization
with a MIP solver. However, computing a lower bound with these solvers might be practical even for large
water distribution systems.

The configuration file shown in Figure 11.2 defines a sensor placement problem with the compute bound
option set to true in the problem block. This option indicates that the goal for the optimizer is to compute
a lower bound on the globally optimal solution, rather than finding a sensor placement. All other options
are those previously defined in example 3 of the Sensor Placement Examples (See Section 5.4).

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: True
compute greedy ranking: True

solver:
type: glpk
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound/Net3
debug: 0

Figure 11.2: The sp configuration file using the GLPK solver to compute a lower bound.

The YAML output file in Figure 11.3 contains the lower bound value. This is the same value as the solution
generated by the GRASP heuristic in example 3 of the Sensor Placement Examples (See Section 5.4). In
this manner, a MIP solver can be used to evaluate whether a heuristic sensor placement is near-optimal.

The Lagrangian heuristic leverages the structure of the eSP model (Equations 5.1) to guide its search.

125

{
"solver type": "glpk",
"run date": "2014-06-14 08:17:11",
"problem type": "default",
"lower bound": 8655.8063559322109,
"CPU time": 5.9808919429779053,
"EPANET node ID": [],
"modeling language": "pyomo",
"upper bound": null,
"objective": null,
"node ID": []

}

Figure 11.3: The sp YAML file with the lower bound from the GLPK solver.

Specifically, this heuristic computes the optimal values for the integer relaxation of eSP and then applies a
randomized rounding technique. As a consequence, this heuristic can also be used to compute bounds on
the value of sensor placement in a manner that is similar to a MIP solver. The configuration file in Figure
11.4 uses the Lagrangian solver to determine the sensor placement for example 3 of the Sensor Placement
Examples (See Section 5.4).

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: False
compute greedy ranking: False

solver:
type: lagrangian
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound_lag/Net3
debug: 0

Figure 11.4: The sp configuration file using the Lagrangian solver.

The YAML output file in Figure 11.5 shows the results of sensor placement using the Lagrangian solver for
example 3 of the Sensor Placement Examples (See Section 5.4). It contains the sensor locations (EPANET
IDs), the objective value (the impact metric value), the lower bound on this objective as well as the upper
bound, which is the same as the objective value. The sensor locations identified are nodes 139, 161, 191
and 208. The mean extent of contamination (EC) impact for this design is approximately 9889 pipe feet
contaminated. The lower bound is approximately 9819 pipe feet contaminated, which is greater than the

126

bound computed by GLPK. This illustrates the fact that the bounds computed by the Lagrangian solver are
weaker than those computed by a MIP solver.

sp output
general:

version: 1.2 # WST version
date: ’2014-08-01’ # Run date
cpu time: 0.208 # CPU time (sec)
directory: C:/WST-1.2/examples/sp_bound_lag
log file: Net3_sp_output.log # Log file

sensor placement:
nodes: [[’139’, ’161’, ’191’, ’208’]] # List of sensor nodes
objective: [’9889.90378’] # Objective value
lower bound: 9819.335391 # Lower bound
upper bound: 9889.90378 # Upper bound
greedy ranking: Net3_evalsensor.out # Upper bound
stage 2: [] # Upper bound

Figure 11.5: The sp YAML file with the lower bound from the Lagrangian solver.

As with MIP solvers, the Lagrangian solver can also be used to simply compute this lower bound. The
configuration file in Figure 11.6 shows an example of using the compute bound option in the problem block
with the Lagrangian solver.

11.2.2 Managing Sensor Placement Locations

By default, the sp subcommand assumes that all node locations in a water distribution network are feasible
sensor locations. In practice, sensors cannot be practically installed in many locations without significant
cost and inconvenience. The location block in the configuration file is used to specify options for declaring
feasible and infeasible node locations in the network. Additionally, the location block can be used to declare
node locations as fixed, where a sensor must be placed, and unfixed, where a sensor cannot be located.

A location block consists of a list of declarations that are interpreted in their order within the configuration
file. Each declaration consists of a dictionary with a single key, whose value is either a string or list of
EPANET node IDs. For example, the following location block declares a list of infeasible node locations:

location:
- infeasible nodes:

- 113
- 121
- 141
- 163
- 209

The impact of infeasible sensor locations on the results for example 1 of the Sensor Placement Examples (See
Section 5.4) is shown in following example. The solution from this example placed sensors at nodes 113, 121,
141, 163 and 209 and the mean extent of contamination (EC) for this sensor design was 8655. If these nodes
were listed as infeasible sensor locations (as shown in the location block above) in the configuration file, the
new sensor locations are nodes 111, 119, 169, 207 and 237. The mean EC for this new solution is 8932 which
is worse than the initial design; this reflects the fact that a sensor design that can use any location will be
better than a sensor design that can use a limited set of locations.

11.2.3 Limited-Memory Sensor Placement Techniques

Controlling the memory used by optimizers is a critical issue when solving large sensor placement formula-
tions. This is a particular challenge for MIP methods, but both the GRASP and Lagrangian heuristics can
exceed a workstation’s memory when solving very large problems. The sp subcommand supports a vari-
ety of mechanisms that reduce the problem representation size while preserving the structure of the sensor

127

impact data:
- name: impact1

impact file: Net3_ec.impact
nodemap file: Net3.nodemap
directory: Net3

objective:
- name: obj1

goal: impact1
statistic: MEAN

constraint:
- name: const1

goal: NS
statistic: TOTAL
bound: 5.0

sensor placement:
type: default
objective: obj1
constraint: const1
presolve: True
compute bound: True
compute greedy ranking: False

solver:
type: lagrangian
options: {}
logfile: null
verbose: 0

configure:
output prefix: sp_bound_only_lag/Net3
debug: 0

Figure 11.6: The sp configuration file using the Lagrangian solver and the compute bound option.

placement problem. These techniques include: scenario aggregation and filtering, feasible locations, witness
aggregation, skeletonization and explicit memory management.

Scenario Aggregation: Scenario aggregation compresses the data in an impact file while preserving its
fundamental structure. This strategy is effective when optimizing for mean performance objectives. Scenario
aggregation is performed with the scenarioAggr command, which is described in Section 13.4.

Filtering Impacts: Filtering impacts can also reduce memory requirements for sensor placement by re-
ducing the size of the impact files. Filtering can limit the sensor placement formulation to only consider
contamination incidents that are sufficiently bad in the worst-case. Filtering is performed with the filter_-
impacts executable, which is described in Section 13.2

Feasible Locations: Limiting the feasible locations is another strategy to reduce memory requirements.
The size of the sensor placement formulation decreases as the number of feasible locations decreases. The
location block option described in Section 11.2.2 can be used to specify the set of feasible locations.

Witness Aggregation: Witness aggregation limits the size of the sensor placement formulation by ag-
gregating the decision variables that witness a contamination incident. By default, variables that witness
contamination incidents with the same impact are aggregated, and this typically reduces the MIP constraint
matrix by a significant amount. Further reductions perform more aggressive aggregations that create an
approximate sensor placement formulation.

Witness aggregation is specified using an aggregate block in the sp configuration file. A named aggregation
block specifies the type of aggregation, the aggregation limit value and the associated impact data. For
example:

aggregate:

128

- name: agg1
type: PERCENT
goal: impact1
value: 0.125
conserve memory: 0
distinguish detection: 0
disable aggregation: [0]

The following table illustrates the use of the two witness aggregation options when optimizing the mean
extent of contamination: aggregation type = PERCENT and aggregation type = RATIO. The RATIO
aggregation type can be used with distinguish detection option to help with aggregation. The second line
of data in this table is the default aggregation, which has about half as many non-zero values in the MIP
constraint matrix. Both the percent and ratio aggregation strategies effectively reduce the problem size while
finding near-optimal solutions.

Aggregation Type Aggregation Value Binary Variables MIP Nonzeros Solution Value
None NA 97 220736 8525
PERCENT 0.0 97 119607 8525
PERCENT 0.125 97 49576 9513
RATIO 0.125 97 12437 10991

Skeletonization: Another option to reduce the memory requirement for sensor placement is to reduce the
size of the network model through skeletonization. Skeletonization groups neighboring nodes based on the
topology of the network and pipe attributes. Section 13.5 describes the spotSkeleton executable, which
provides techniques for branch trimming, series pipe merging and parallel pipe merging. These techniques
eliminate pipes and nodes that have little effect on the overall hydraulics of the system. This effectively
contracts a connected piece of the network into a single node, called a supernode. Skeletonized networks
can be used to define geographic proximity in a two-tiered sensor placement approach for large network
models (Klise et al., 2013).

Explicit Memory Management: The GRASP heuristic has several options for controlling how memory
is managed. The grasp-representation solver option can be used to control how the local search steps are
performed. By default, a dense matrix is precomputed to perform local search steps quickly, but a sparse
matrix can be used to perform local search with less memory. Also, the GRASP heuristic can be configured
to use the local disk to store this matrix.

11.2.4 Evaluating a Sensor Placement

Sensor placements can be evaluated based on an impact assessment of possible contaminant incidents. The
evalsensor executable measures the performance of each sensor placement with respect to the set of possible
contamination locations. This analysis assumes that probabilities have been assigned to these contamination
locations. If no probabilities are given, then uniform probabilities are used. The evalsensor executable
takes sensor placements in a sensor placement file and evaluates them using data from one or more impact
files. Sensor placement files are generated using the sp subcommand, and the file format is described in File
Formats Section 12.10. Impact files are generated using the sim2Impact subcommand, and the file format
is described in the File Formats Section 12.4. Additional information on evalsensor can be found in the
Executable Files Section 13.1.

The following example demonstrates the use of evalsensor using the sensor network design from Section 5.4.
The evalsensor command for this example is executed using the following command:

evalsensor --nodemap=Net3.nodemap Net3_ec.sensors Net3_ec.impact Net3_mc.impact

This example generates output shown in Figure 11.7.

The evalsensors command can also evaluate a sensor placement in the case where sensors can fail, and

129

--
Sensor placement id: 23112
Number of sensors: 5
Total cost: 0
Sensor node IDs: 17 19 24 65 88
Sensor junctions: 115 119 127 209 267

Impact File: Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 9951.5669
Lower quartile impact: 1650.0000
Median impact: 9694.0000
Upper quartile impact: 15044.8000
Value at Risk (VaR) (5%): 25485.0000
TCE (5%): 27992.4667
Max impact: 33110.0000

Impact File: Net3_mc.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 70806.1310
Lower quartile impact: 503.9170
Median impact: 83999.3000
Upper quartile impact: 143984.0000
Value at Risk (VaR) (5%): 143999.0000
TCE (5%): 144049.5000
Max impact: 144143.0000
--

Figure 11.7: The evalsensor example output.

there is some small number of different classes of sensors (grouped by false negative probability). This
information is specified by an imperfect sensor class file and an imperfect junction class file, which are
defined in Sections 12.6 and 12.5, respectively. The imperfect sensor class (sc) file, Net3.imperfectsc,
specifies different categories of sensor failures. Sensors of class 1 have a false negative probability of 25%,
sensors of class 2 have a probability of 50%, class 3 have a 75% probability and class 4 100%.

1 0 .25
2 0 .50
3 0 .75
4 1 .0

Once failure classes are defined, the nodes of the network are assigned to failure classes by using a imperfect
junction class (jc) file. The beginning of the imperfect junction class file Net3.imperfectjc is shown below.

1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 1
10 1

Given the junction classes, evalsensor is used to determine the expected impact of a sensor placement, given
that sensors might fail. The following command line executes evalsensor with specified failure probabilities:

130

evalsensor --nodemap=Net3.nodemap --sc-probabilities=Net3.imperfectsc \
--scs=Net3.imperfectjc Net3_ec.sensors Net3_ec.impact

This example generates output shown in Figure 11.8.

--
Sensor placement id: 23112
Number of sensors: 5
Total cost: 0
Sensor node IDs: 17 19 24 65 88
Sensor junctions: 115 119 127 209 267

Impact File: Net3_ec.impact
Number of events: 236
Min impact: 0.0000
Mean impact: 16472.1977
Lower quartile impact: 5270.0000
Median impact: 13440.0000
Upper quartile impact: 24199.0000
Value at Risk (VaR) (5%): 49232.5172
TCE (5%): 52421.7876
Max impact: 55814.4578
--

Figure 11.8: The evalsensor output using sensor failure probabilities.

The mean extent of contamination impact changes dramatically if sensors are allowed to fail. The original
solution was misleading if sensors fail according to the assigned probabilities. With sensor failures, the
expected impact is much higher.

131

11.3 Source Identification with Grab Samples Case Study

The following case study illustrates how the inversion and grabsample subcommands can be used in tandem
to perform multiple cycles of source inversion calculations as more and more measurement data becomes
available. The solution approach integrates iterative sampling strategy for finding the contamination source
using discrete measurements obtained from manual grab samples taken during different sampling cycles.
Figure 11.9 illustrates the source inversion and grab sample strategy. A contamination incident is first
suspected given a customer inquiry or detection from a fixed continuous sensor in the Contamination Warning
System (CWS). At this stage, a team is sent out to gather manual grab samples at and around the location of
first detection. Discrete yes/no measurements from these manual grab samples along with the measurement
from CWS are then used to identify the potential sources of the contamination incident. Since the inversion
problem is an ill-posed problem, the solution will generally be non-unique. A set of likely locations can be
identified and the grabsample subcommand can be used to determine the location of the next manual grab
samples. The source inversion is performed again using the new information. This cycle of collecting manual
grab samples and performing source inversion is continued until the true injection location(s) is identified.

Contaminant
Detected

Physically Obtain
Measurements

Perform Source
Inversion

Small Set of
Likely Events?

Set of Likely Events

Determine Optimal
Grab Sample

Locations

Yes

Done

No

Measurements from
Sensors or EDS

Figure 11.9: Illustration of the source inversion and grab sample cycling strategy.

11.3.1 Case Study

In the following case study, a conservative contaminant is injected into node 163 of EPANET Example
Network 3 (Net3) starting at 8 AM. The Bayesian probability based formulation [8.1.2] is used in the
inversion subcommand to identify the possible contamination sources. Figure 11.10 shows the fixed sensor
locations in blue while the original contamination location is shown in red. The CWS consists of five fixed
sensors that provide measurements every 15 minutes.

All the files required for this case study are provided in the examples/case_studies/inversion folder.

The case study is a composed of three cycles of source inversion and grab sampling to reduce the number of
possible contamination source locations. During each cycle, the inversion subcommand uses the following
data:

132

Figure 11.10: Fixed sensors (blue) and contamination location (red) for case study.

• Net3.inp - EPANET Example Network 3 input (INP) file.

• MEASURES.dat - Measurements file binary (yes/no) results from fixed sensors and grab samples.

• <output_prefix>_Likely_Nodes.dat - Likely nodes file containing a list of feasible nodes to consider
as possible contamination source nodes. This file is only used in cycles 2 & 3.

The inversion subcommand outputs a YAML file with a list of possible contamination sources. A TSG
file is also created that provides information about the possible contamination incidents. This file can be
used in the grabsample subcommand. Thereafter, Cycles 1 & 2 use the following data to determine optimal
sample location:

• Net3.inp - EPANET Example Network 3 input (INP) file.

• <output_prefix>_profile.tsg - TSG file which contains a list of likely injections obtained from the
inversion subcommand.

• Sample time - Time in the future when the samples are expected to be taken. This is generally the
current time plus the time it would take the sample teams to obtain measurements.

• fixed_sensors.dat - List of fixed continuous sensor locations. This is used to avoid fixed sensors being
selected as grab sample locations.

133

11.3.2 Cycle 1

At 8:15 AM, the sensor located at node 167 detects abnormal water quality. Further confirmation is made
with another positive measurement at 8:30 AM. At this point, the measurement data from the past 8 hours
is used to perform source inversion. The inversion subcommand identifies 24 possible injection locations as
shown in red in Figure 11.11. The grabsample subcommand is then used to identify additional measurement
locations that will reduce the number of possible injection locations. The utility has three teams available
to gather manual grab samples and it takes 30 minutes for each team to obtain the manual samples. The
grabsample subcommand identifies the three optimal grab sample locations shown in blue in Figure 11.11.

Figure 11.11: The possible injection nodes (red) and optimal grab sample locations (blue) identified in Cycle
1.

The files required and generated during this cycle of source inversion and grab sample are provided in the
examples/case_studies/inversion/Cycle1 folder.

11.3.3 Cycle 2

In the 30 minutes that the sampling teams take to get manual grab sample measurements from the locations
identified in Cycle 1, new measurements are also available from the fixed sensors in the CWS. At 9:00 AM,
these new measurements are used to perform source inversion again. This time the inversion subcommand
identifies seven possible injection locations as shown in Figure 11.12. In Cycle 2, the possible sources were

134

restricted to the 24 nodes identified in Cycle 1 using the feasible nodes option. Again a 30-minute delay for
sample collection and three sample teams were used in the grabsample subcommand to identify the optimal
grab sample locations at 9:30 AM. These grab sample locations are also shown in Figure 11.12.

Figure 11.12: The possible injection nodes (red) and optimal grab sample locations (blue) identified in Cycle
2.

The files required and generated during this cycle of source inversion and grab sample are provided in the
examples/case_studies/inversion/Cycle2 folder.

11.3.4 Cycle 3

Grab sample measurements are obtained at 9:30 AM from the optimal locations identified in Cycle 2. These
along with the new measurements obtained from the fixed sensors are used to perform source inversion again.
Only the seven possible injection nodes obtained in Cycle 2 are considered as feasible nodes in the inversion
subcommand for Cycle 3. Three possible injection locations as shown in Figure 11.13 are identified in this
cycle.

Since the water utility has three sampling teams available, the teams can directly inspect the three possible
injection locations identified in this cycle to confirm the true injection location.

135

Figure 11.13: The possible injection nodes (red) identified in Cycle 3.

11.4 Flushing with Source Identification Case Study

When a water utility becomes aware of a water quality issue either through customer complaints or water
quality sensor alarms, they often open a hydrant to flush a portion of the distribution network in or-
der to bring new water into the area and increase the chlorine residual. This case study examines how
to identify effective flushing locations following a water quality sensor alarm using the the flushing,
inversion and grabsample subcommands. All files required to run the case study are provided in the
examples/case_studies/flushing folder.

The EPANET input file for this example is Net6.inp, which has a simulation duration of seven (7) days
starting at midnight. The network is assumed to include a contamination warning system (CWS) with
ten optimally placed water quality sensors and an event detection system in operation. The 10 sensors
are located at JUNCTION-1617, JUNCTION-199, JUNCTION-2297, JUNCTION-2716, JUNCTION-2930,
JUNCTION-3023, JUNCTION-435, JUNCTION-552, JUNCTION-675 and JUNCTION-831. The sensors
were optimally placed using the sp subcommand. Figure 11.14 shows the water distribution network and
the location of the water quality sensors. The CWS provides binary values every 15 minutes from each
sensor location. The binary value is zero if water quality conditions are normal or one if the conditions are
abnormal.

At 10:15 AM, the CWS alerts water utility staff to abnormal water quality occurring at water quality sensor

136

Figure 11.14: Net6 water distribution network with water quality sensors.

located at JUNCTION-1617 in water distribution network model. Figure 11.15 shows the JUNCTION-1617
highlighted as the sensor location with a positive detection of contamination in the network.

The water utility must now decide how to proceed. The staff checks their consequence management plan
and sends out a team to ensure that the water quality sensor is working properly. The water utility staff
determines that a contamination incident is possible and they would like to identify the source. Source
identification allows the water utility to determine the extent of contamination (or spread) and possibly
shut off any continuing injection of contaminants. Using the CWS information from the past 35 hours,
provided in the measurements file Net6_CWS_MEASURES.dat, and the Net6 INP file, the inversion
subcommand is used to identify the possible sources of the contamination. The inversion configuration
file, Net6_inversion.yml, and the measurements file are provided in the examples/case_studies/flushing
folder.

The inversion subcommand can be executed using the following command line:
wst inversion Net6_inversion.yml

137

Figure 11.15: Net6 with positive contamination detection at JUNCTION-1617.

Figure 11.16 shows the 25 possible contamination sources identified by the inversion subcommand.

Since flushing is a common response to abnormal water quality, the water utility staff decide to open hydrants
to flush the contaminated water out of the network. To determine the most effective flushing locations, the
staff simulates contamination incidents from each possible contamination source location using the TSG
produced from the inversion subcommand. From these simulations, the possible extent of contamination
from each source location is identified. The nodes in the water distribution network model which have
contaminant concentrations above zero at the starting of flushing (12:00 PM, approximately two hours
after detection) are considered as the initial starting points for the network solver option in the flushing
subcommand. Figure 11.17 shows the nodes impacted by the 25 possible contamination source locations.

The water utility decides to open two hydrants to flush the contaminated water out of the network, since
the extent of contamination for the possible 25 contamination sources (as seen in Figure 11.17) is not very
large at the start of flushing at 12:00 PM. To identify effective flushing locations, the flushing subcom-
mand is used. This command requires the following files as specified in the flushing configuration file,
Net6_flush_2nodes.yml:

• Net6.inp - Net6 EPANET input (INP) file.

• Net6_inv1_profile.tsg - The TSG file created by the inversion subcommand.

• Net6_bio.tai - The TAI file describing the dose-response characteristics for the assumed contaminant.
This file is required when using the population exposed (PE) impact metric.

In addition, characteristics of the flushing response are also defined in the flushing configuration file. These

138

Figure 11.16: Net6 with possible contamination sources identified by inversion subcommand.

include:

• A list of nodes that can be flushed - All non-zero demand (NZD) nodes

• The maximum number of nodes which can be flushed simultaneously - 2

• The flushing rate - 1100 gallons/min

• The flushing duration - 8 hours

• The response time delay (time between detection and start of flushing) - 1 hour

Other information provided in the flushing configuration file include the impact metric that is going to be
minimized (PE), the nodes where water quality sensors are located, the type of solver (network solver), and
the initial starting points for the network solver (JUNCTION-1881 and JUNCTION-1878).

The flushing subcommand can be executed using the following command line:
wst flushing Net6_flush_2nodes.yml

Figure 11.18 shows the flushing nodes identified by the flushing subcommand. The flushing nodes identified
are JUNCTION-1881 and JUNCTION-2233.

Since the identified flushing nodes were based upon the 25 possible contamination sources, the water utility
staff evaluate the flushing response against each of the possible sources assuming it was the true source of
the contamination. This option is available using EVALUATE as the type under the solver block of the
flushing configuration file. An example flushing configuration file for the evaluate option is provided in

139

Figure 11.17: Net6 with nodes impacted by the 25 possible contamination sources.

Net6_flush_2nodes_eval_JUNC1617.yml in the examples/case_studies/flushing folder. This example
assumes that JUNCTION-1617 is the true source of contamination in the network and it evaluates the
effectiveness of the identified flushing locations in terms of the PE metric. If JUNCTION-1617 is the true
source, flushing at JUNCTION-1881 and JUNCTION-2233 reduces the PE metric by two percent (2%).

The flushing subcommand for this can be executed using the following command line:
wst flushing Net6_flush_2nodes_eval_JUNC1617.yml

Because the inversion subcommand solvers assume a continuous injection, the created TSG file has the
contamination injection durations lasting as long as the simulation duration listed in the network INP file.
Thus, the contamination injections start a little before the detection time and stop at the end of the simulation
(seven days). Since an important response action would include shutting off the source of contamination,
the TSG file is modified to stop the injection five hours after detection. Using the modified TSG file, the
flushing response is evaluated against each of the 25 possible sources assuming it was the true source of
the contamination. Figure 11.19 shows the percent reduction in the PE metric for each of the 25 possible
contamination sources with flushing alone (blue) and flushing with shutting off the contamination source
(green). The percent reduction in the PE metric ranges from 24% to 97% for the flushing with source shut-off
response action, which is an increase from the range of 2% to 45% for the flushing alone action. The highest
percent reduction was if the true injection incident occurred at JUNCTION-1881.

140

Figure 11.18: Net6 with the flushing nodes identified by the flushing subcommand.

Figure 11.19: The reduction in the PE metric for each of the 25 possible contamination sources.

141

Chapter 12

File Formats

This chapter describes the different file formats used by WST, including a brief description, format, the
associated subcommand(s), and any additional details.

12.1 Configuration File

• Description: Input configuration file for all WST subcommands.

• Format: YAML

• Created by: Template input configuation files can be created using the –template option from each
subcommand in WST.

• Used by: WST

• Details: The input configuration files for WST are stored in the YAML file format. YAML is a
human-readable file format that is well suited for storing hierachical information. This information
can be easily parsed and stored as common data types such as strings, scalars, lists and dictonaries by
a range of programming languages. WST uses PyYAML to parse YAML files into Python data types.
Basic YAML format specifications are listed below:

– Each element of a YAML file is a key, value pair seperated by a colon (key:value).
– The key is the name given to the element, and the value is the data for that element.
– The hierarchy of YAML files is maintained by outline indentation.
– The number of spaces used to indent an element in the YAML file must be consistent across all

parallel elements.
– Nested data elements must be indented further than their preceding level.
– Tab indentation is not recommended.
– Optional blank lines can be added for readability.
– Comments begin with the number sign (#) and must be separated from a key:value pair by space.

Comments can start anywhere but are limited to a single line.
– Strings do not require quotation (unless they could be cast as a number) and can contain spaces.
– Lists are indicated with square brackets or hyphens. When using square backets, the list is comma

seperated. When using hyphens, each entry of the list is on a new line.
– Dictonaries are indicated with indentation or curly brackets.
– PyYAML automatically casts datatypes. For example, [123] is read as a list with a single integer

value, "123" is read as a string, 123 is read as an integer, and 123.0 is read as a float.

142

Additional information on YAML files can be found on the official YAML website http://www.yaml.
org.
Select aspects of the flushing subcommand template configuration file are used as an example of the
format of a YAML file. The full the flushing subcommand template configuration file is shown in
Figure 6.2. In the template, the top level key, denoted flushing, contains the following data:

flushing configuration template
network:

epanet file: Net3.inp # EPANET network file name
scenario:

location: [NZD] # Injection location: ALL, NZD or EPANET ID
type: MASS # Injection type: MASS, CONCEN, FLOWPACED, or SETPOINT
strength: 100.0 # Injection strength [mg/min or mg/L depending on type]
species: null # Injection species, required for EPANET-MSX
start time: 0 # Injection start time [min]
end time: 1440 # Injection end time [min]
tsg file: null # TSG file name, overrides injection parameters above
tsi file: null # TSI file name, overrides TSG file
msx file: null # Multi-species extension file name
msx species: null # MSX species to save
merlion: false # Use Merlion as WQ simulator, true or false

impact:
erd file: null # ERD database file name
metric: [PE] # Impact metric
tai file: Net3_bio.tai # Health impact file name, required for public health metrics
response time: 0 # Time [min] needed to respond
detection limit: [0.0] # Thresholds needed to perform detection
detection confidence: 1 # Number of sensors for detection
msx species: null # MSX species used to compute impact

flushing:
detection: [111, 127, 179] # Sensor locations to detect contamination scenarios
flush nodes:

feasible nodes: NZD # Feasible flushing nodes
infeasible nodes: NONE # Infeasible flushing nodes
max nodes: 2 # Maximum number of nodes to flush
rate: 800.0 # Flushing rate [gallons/min]
response time: 0.0 # Time [min] between detection and flushing
duration: 480.0 # Flushing duration [min]

close valves:
feasible pipes: ALL # Feasible pipes to close
infeasible pipes: NONE # Infeasible pipes to close
max pipes: 0 # Maximum number of pipes to close
response time: 0.0 # Time [min] between detection and closing pipes

solver:
type: coliny:StateMachineLS # Solver type
options: # A dictionary of solver options
logfile: null # Redirect solver output to a logfile
verbose: 0 # Solver verbosity level
initial points: []

configure:
output prefix: Net3 # Output file prefix
debug: 0 # Debugging level, default = 0

This subset of the the flushing subcommand template is refered to as the flushing block. Instead of
a single value assigned to flushing, the value is a dictonary containing a nested stucture of additional
key:value pairs.
The keys detection, flush nodes and close valves options are all second level keys inside the flushing
block. The location of these keys is often specified using the notation [flushing][detection], [flush-
ing][flush nodes] and [flushing][close valves]. The second level keys must be indented using the same
number of spaces and they must have unique names. The key [flushing][detection] is assigned to a list.
Lists can be specified in one of two ways, using square brackets or using hyphen. The following two
formats (seperated by —) are equivalent.

143

http://www.yaml.org
http://www.yaml.org

flushing:
detection: [111, 127, 179] # square bracket notation, comma seperated

flushing:

detection: # hyphen notation, new line for each entry
- 111
- 127
- 179

All template configuration files use square brackets to indicate where a list of input values can be used.
If these input values include keywords, like NZD for non-zero demand nodes, this information is listed
in the comment or in the user manual documentation for that specific YAML input parameter.
The options [flushing][flush nodes] and [flushing][close valve] are both assigned dictonaries. The data
inside these second level keys contain additional key:value pairs. All keys within these dictonaries
must be indented using the same number of spaces and have unique names. Two key:value pairs in the
flushing flush nodes option are listed below:

flushing:
flush nodes:

feasible nodes: NZD
max nodes: 2

Here, the [flushing][flush nodes][feasible nodes] option is set to the string NZD and the [flushing][flush
nodes][max nodes] option is set to the integer 2. Note that there are two third order keys named
response time, however they are used in different nested structures, as shown below:

flushing:
flush nodes:

response time: 0.0
close valve:

response time: 0.0

YAML files can be written in a compact format that uses curly brackets to represent the hierarchical
indentation. While this avoids issues with space indentation, this format is more difficult for the user
to read. For example, the following two examples (seperated by —) are equivalent:

flushing:
detection: [111, 127, 179]

{’flushing’: {’detection’: [111, 127, 179]}}

12.2 Cost File

• Description: Specifies the costs for installing sensors at different nodes throughout a network.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: Each line of this file has the format:
<EPANET-ID> <cost>

Nodes not explicitly enumerated in this file are assumed to have a cost of zero unless the ID ’__-
default__’ is specified. For example to specify that all un-enumerated nodes have a cost of 1.0:

__default 1.0

144

12.3 ERD File

• Description: Provides a compact representation of all contamination scenario simulation results.

• Format: binary

• Created by: tevasim

• Used by: sim2Impact

• Details: The simulation data generator produces four output files containing the results of all con-
tamination simulation scenarios. The database files include an index file (index.erd), a hydraulics file
(hyd.erd) and a water quality file (qual.erd). The files are unformatted binary file in order to save disk
space and computation time. They are not readable using an ordinary text editor.

• Note: The ERD file format replaced the TSO and SDX file formats, created by previous versions
of tevasim, to extend the capability of tevasim for multi-species simulation using EPANET-MSX.
While the tevasim subcommand produces only ERD files (even for single species simulation), the
sim2Impact subcommand accepts both ERD and TSO file formats.

12.4 Impact File

• Description: Provides the impact of all contamination incidents at every point that it is witnessed
through a water distribution network.

• Format: ASCII

• Created by: sim2Impact

• Used by: sp and evalsensor

• Details: The first line of an impact file contains the number of incidents. The second line specifies
the number of delays (always 1) and the delay time in minutes. Subsequent lines have the format

<scenario-index> <node-index> <time-of-detection> <impact-value>

The scenario index is the index of contamination scenarios that were simulated. A scenario index maps
to a line in the network scenariomap file, which is defined in Section 12.9. The node index is the index
of a witness location for the incident. A node index maps to a line in the network nodemap file, which
is defined in Section 12.8. The time of detection is in minutes. The value of the impacts are in the
corresponding units for each impact metric. The different impact metrics in each line correspond to
the different delays that have been computed.

12.5 Imperfect Junction Class File

• Description: Provides the mapping from EPANET node IDs to failure classes of different false-
negative probabilities.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: The imperfect junction class file provides the mapping from EPANET node IDs to failure
classes of different false-negative probabilities as defined in a imperfect sensor class file (See Section
12.6 for information on imperfect sensor class files). The format of this file is:

145

<node id> <failure class>
<node id> <failure class>
....

For example, node 1 is of class 2, node 2 is of class 1 and node 3 is of class 1:
1 2
2 1
3 1
....

12.6 Imperfect Sensor Class File

• Description: Contains false negative probabilities for different types of sensors.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: The file has format:
<class id> <false negative probability>
<class id> <false negative probability>
....

For example, the following file defines a failure class 1, with a false negative probability of 25 percent,
and a failure class 2 with a false negative probability of 50 percent:

1 0.25
2 0.5
....

12.7 Measurements File

• Description: Contains a list of measurements along with their corresponding time and EPANET
node ID.

• Format: ASCII

• Created by: WST user or a water quality event detection system or a data acquisition system

• Used by: inversion

• Details: Each line of this file has the format:
<EPANET-ID> <Time from beginning of simulation (sec) > <Binary yes/no measurement>

An example measurements file is provided:
Node_name time Cij

149 0 0
149 900 0
149 1800 0
149 2700 0
149 3600 0
149 4500 0
149 5400 0

146

12.8 Nodemap File

• Description: Provides a mapping from the indices used for sensor placement to the node IDs used
within EPANET.

• Format: ASCII

• Created by: sim2Impact

• Used by: evalsensor and sp

• Details: Each line of this file has the format:
<node-index> <EPANET-ID>

This mapping is generated by the sim2Impact subcommand, and all sensor placement solvers subse-
quently use the node indices internally.

12.9 Scenariomap File

• Description: The scenario file provides auxiliary information about each contamination incident.

• Format: ASCII

• Created by: sim2Impact

• Used by: evalsensor

• Details: Each line of this file has the format:
<node-index> <EPANET-ID> <source-type> <source-start-time> ...

<source-stop-time> <source-strength>

The node index maps to the network nodemap file as described in Section 12.8, and the EPANET
ID provides this information. The source type is the injection mode for an scenario, e.g., flow-paced
or fixed-concentration. The scenario source start and stop times are in minutes, and these values
are relative to the start of the EPANET simulation. The source strength is the concentration of
contaminant at the injection source.

12.10 Sensor Placement File

• Description: Describes one or more sensor placements.

• Format: ASCII

• Created By: sp

• Used By: evalsensor

• Details: Lines in a sensor placement file that begin with the # character are assumed to be comments.
Otherwise, lines of this file have the format

<sp-id> <number-of-sensors> <node-index-1> ...

The sensor placement ID is used to identify sensor placements in the file. Sensor placements could have
differing numbers of sensors, so each line contains this information. The node indices map to values in
the nodemap file described in Section 12.8.

147

12.11 TAI File

• Description: Describes the information needed for assessing health impacts.

• Format: ASCII

• Created by: WST user

• Used by: sim2Impact

• Details: This file is required for health impact metrics, such as population exposed, population dosed,
and populationd killed. The following example can be copied directly into a text editor.

.; THREAT ASSESSMENT INPUT (TAI) FILE
; USAGE: teva-assess.exe <TAI filename>
; Data items explained below
; UPPERCASE items are non-modifiable keywords
; lowercase items are user-supplied values
; | indicates a selection
;--
; INPUT-OUTPUT
; * TSONAME - The location of the ERD or TSO file containing the results
; to analyze. This value is ignored when used in sim2Impact
; to specify parameters for the pe, pk, or pd metrics.
; * TAONAME - Name of threat assessment output (TAO) file. This value
; is ignored when used in sim2Impact to specify parameters
; for the pe, pk, or pd metrics.
; * SPECIES_NAME - The species name to analyze. This is optional - if it is not
; specified, the first species will be used. If the database
; was generated by EPANET-MSX, the value MUST match one of
; the species specified in the MSX input file. If the database
; was generated by EPANET, the value should be "species" if tevasim
; generated the database. If TEVA-SPOT generated the database,
; the value MUST match the name spefied in the GUI.
; * THRESHOLD - The concentration threshold. All concentrations below
; value are set to 0. Only used in the the threatassess
; executable, not in sim2Impact
;--
TSONAME charstring
TAONAME charstring
SPECIES_NAME charstring
THRESHOLD value
;--
; DOSE-RESPONSE PARAMETERS
; * A - Function coefficient
; * M - Function coefficient
; * N - Function coefficient
; * TAU - Function coefficient
; * BODYMASS - Exposed individual body mass (kg)
; * NORMALIZE - Dose in mg/kg (YES) or mg (NO)
; * BETA - Beta value for probit dose response model
; * LD50 - LD50 or ID50 value for the agent being studied
; * TYPE - Either PROBIT or OLD depending on the dose response equation
; to be used. If it is PROBIT, only the LD50 and BETA values
; need to be specified, and if it is OLD, the A, M, N, and TAU
; values need to be specified. The BODYMASS and NORMALIZE
; apply to both equations.
;--
DR:A value
DR:M value
DR:N value
DR:TAU value
BODYMASS value
NORMALIZE YES|NO
DR:BETA value

148

DR:LD50 value
DR:TYPE probit | old
;--
; DISEASE MODEL
; * LATENCYTIME - Time from exposed to symptoms (hours)
; * FATALITYTIME - Time from symptoms till death (hours)
; * FATALITYRATE - Fraction of exposed population that die
;--
LATENCYTIME value
FATALITYTIME value
FATALITYRATE value
;--
; EXPOSURE MODEL
; * DOSETYPE - TOTAL = Total ingested mass
; * INGESTIONTYPE - DEMAND = Ingestion probability proportional to demand
; ATUS RANDOM = ATUS ingestion model, random volume
; selection from volume curve
; ATUS MEAN = ATUS ingestion model, mean volume of value
; FIXED5 RANDOM = 5 fixed ingestion times (7AM, 9:30AM, Noon, 3PM, 6PM),
; random volume selection from volume curve
; FIXED5 MEAN = 5 fixed ingestion times (7AM, 9:30AM, Noon, 3PM, 6PM),
; mean volume of value
; * INGESTIONRATE - Volumetric ingestion rate (Liters/day) - used for DEMAND,
; ATUS MEAN and FIXED5 MEAN
;--
DOSETYPE TOTAL
INGESTIONTYPE DEMAND | ATUS RANDOM | ATUS MEAN | FIXED5 RANDOM | FIXED5 MEAN
INGESTIONRATE value
;--
; POPULATION MODEL
; * POPULATION FILE - File name that contains the node-based
; population. The format of the file is simply
; one line per node with the node ID and the
; population value for that node.
; * POPULATION DEMAND - Per capita usage rate (flow units/person).
; The population will be estimated by demand.
;--
POPULATION FILE | DEMAND value
;--
; DOSE OVER THRESHOLD MODEL
; * DOSE_THRESHOLDS - The dose over each threshold specified will be
; computed and output to the TAO file.
; * DOSE_BINDATA - Specifies the endpoints of bins to tally the number
; of people with a dose between the two endpoints.
; Values can be either dose values or response values -
; response values are converted to dose values using the
; dose-response data specified in this file and are indicated
; on this line by the keyword RESPONSE. Dose values are
; IDENTIFIED by the keyword DOSE.
;--
DOSE_THRESHOLDS value1 ... value_n

12.12 TSG File

• Description: Specifies how an ensemble of EPANET contamination scenario simulations will be
performed.

• Format: ASCII

• Created by: WST user

• Used by: tevasim

149

• Details: Each line of a TSG file specifies injection location(s), species (optional), injection mass, and
the injection time-frame:

<injection-location> <injection-type> <specie> <injection-mass> <start-time> <end-time>

If <specie> is included, the tevasim subcommand uses EPANET-MSX. The simulation data generator
uses the specifications in the TSG file to construct a separate threat simulation input (TSI) file that
describes each individual contamination scenario in the ensemble. Each line in the TSG file uses a
simple language that is expanded to define the ensemble. The entire ensemble is comprised of the
cumulative effect of all lines in the TSG file. The TSG file is an optional file, since the ensemble of
contamination scenarios can be specified in the configuration file.

<Src1><SrcN> <SrcType> <SrcSpecie> <SrcStrngth> <Start> <Stop>

<Srci>: A label that describes the ith source location of an N-source ensemble.
This can be either: 1) An EPANET node ID identifying one node
where the contaminant is introduced, 2) ALL, denoting all nodes

(excluding tanks and reservoirs), 3) NZD, denoting all nodes with
non-zero demands. This simple language allows easy specification of
single- or multi-source ensembles. [Character strings]

<SrcType>: The source type, one of: MASS, CONCEN, FLOWPACED, SETPOINT (see EPANET
manual for information about these types of water quality sources).
[Character string]

<SrcSpecie>: The character ID of the water quality species added by the source. This
parameter must be omitted when using executables built from the standard
EPANET distribution. [Character string]

<SrcStrngth>: The strength of the contaminant source (see EPANET documentation for
the various source types).

<Start>: The time, in seconds, measured from the start of simulation, when the
contaminant injection is started. [Integer]

<Stop>: The time, in seconds, measured from the start of simulation, when the
contaminant injection is stopped. [Integer]

Examples:

One scenario with a single injection at node ID 10, mass rate of 5 mg/min of species
SPECIE1, start time of 0, and stop time of 1000:
10 MASS SPECIE1 5 0 1000

Multiple scenarios with single injections at all non-zero demand nodes:
NZD MASS SPECIE1 5 0 1000

Multiple scenarios with two injections, one at node ID 10, and the other at all
non-zero demand nodes (NZD):
10 NZD MASS SPECIE1 5 0 1000

Multiple scenarios with three injections, at all combinations of all nodes
(if there are N nodes, this would generate N3 scenarios for the ensemble):
ALL ALL ALL MASS SPECIE1 5 0 1000

Note: this language will generate scenarios with repeat instances of injection node
locations (e.g., ALL ALL would generate one scenario for node i and j, and another
identical one for node j and i). Also, it will generate multi-source scenarios with
the same node repeated. In this latter case, the source mass rate at the repeated
node is the mass rate specified in <SrcStrngth>.

12.13 TSI File

• Description: Specifies how an ensemble of EPANET contamination scenario simulations will be
performed.

• Format: ASCII

150

• Created by: tevasim or WST user

• Used by: tevasim

• Details: The TSI file is generated as output from the tevasim subcommand and would not normally
be used, but it is available after the run for reviewing each scenario that was generated for the ensemble.
The TSG file is essentially a short hand for generation of the more cumbersome TSI file. Each record
in the TSI input file specifies the unique attributes of one contamination scenario. The number of
scenarios does not have a restriction.

<NodeID1> <SrcTypeIDX1> <SrcSpecieIDX1> <SrcStrngth1> <Start1> <Stop1> <NodeIDN>...
<SrcTypeIDXN> <SrcSpecieIDXN> <SrcStrngthN> <StartN> <StopN>

<NodeIDi>: EPANET ID identifying the ith node where the contaminant is
introduced. [Character string]

<SrcTypeIDXi>: The EPANET source type index of the ith contaminant source.
Each EPANET source type is associated with an integer index
(see EPANET toolkit documentation for reference). [Integer]

<SrcSpecieIDXi>: The EPANET species index of the ith contaminant source. [Integer]
<SrcStrngthi>: The strength of the ith contaminant source (see EPANET

documentation for description of sources). This value
represents the product of contaminant flow rate and
concentration. [Float]

<Starti>: The time, in seconds, measured from the start of simulation,
when the ith contaminant injection is started. [Integer]

<Stopi>: The time, in seconds, measured from the start of simulation,
when the ith contaminant injection is stopped. [Integer]

One water quality simulation will be run for each scenario specified in the threat
simulation input (TSI) file. For each such simulation, the source associated with each
contaminant location <NodeIDi>, i=1,,N will be activated as the specified type source,
and all other water quality sources disabled. If a source node is specified in the
EPANET input file, the baseline source strength and source type options will be ignored,

12.14 Weight File

• Description: Specifies the weights for contamination incidents.

• Format: ASCII

• Created by: WST user

• Used by: sp

• Details: Each line of this file has the format:
<scenario-ID> <weight>

Scenarios not explicitly enumerated in this file are assumed to have a weight of zero unless the ID
__default__ is specified. For example, to specify that all un-enumerated scenarios have a weight of
1.0:

__default 1.0

151

Chapter 13

Executable Files

This chapter describes the different executable files that can be used outside of WST to evaluate differ-
ent sensor network designs, and to reduce the size of the sensor placement problem by filtering impacts,
aggregating impacts or skeletonizing the water distribution network model. In addition, an executable file
to create a simulated measurements file for sensor locations in a water distribution network model is also
described.

13.1 evalsensor

The evalsensor executable is used to compute information about the impact of contamination incidents for
one or more sensor network designs. The evalsensor executable takes a sensor network design in a sensor
placement file (see File Formats Section 12.10 for more detail) and evaluates them using data from an impact
file or a list of impact files (see File Formats Section 12.4). This executable measures the performance of
each sensor network designs with respect to the set of possible contamination scenarios.

Section 11.2.4 provides more information and an example application of this executable.

13.1.1 Usage

Usage with a specific sensor network design:
evalsensor [options...] <sensor-file> <impact-file1> [<impact-file2>...]

Usage without a sensor network design:
evalsensor [options...] none <impact-file1> [<impact-file2>...]

13.1.2 Options

--all-locs-feasible
A boolean flag to indicate that all locations are treated as feasible.

--costs=<filename>
The name of a file that contains the cost information for each node in the network.

For more details about the cost file, see File Formats Section \ref{formats_costFile}.

--debug
A boolean flag to add output information about each incident.

--format=<type>
The type of output that the evaluation will generate:

cout - Generates output that is easily read. (default)
xls - Generates output that is easily imported into a MS Excel spreadsheet.
xml - Generates an XML-formated output to communicate

with the TEVA-SPOT GUI. (not currently supported)

152

--gamma=<num>
The fraction of the tail distribution used to compute the VaR and TCE

performance measures. (default is 0.05)

-h, --help
A boolean flag to display usage information.

--incident-weights <filename>
The name of a file that contains the weights of the different contamination incidents.
For more details about the weights file, see File Formats Section \ref{formats_weightFile}.

--nodemap=<filename>
The name of a file that contains the node map information for translating sensor placement
indices to EPANET node IDs. For more details about the nodemap file, see File Formats
Section \ref{formats_nodeFile}.

-r, --responseTime=<num>
The number of minutes that are needed to respond to the detection of
contamination. As the response time increases, the impact increases
because the contaminant affects the network for a greater length of
time.

--sc-probabilities=<filename>
The name of a file that contains the probability of detection for each sensor category.
For more details about the imperfect sensor class file, see File Formats Section
\ref{formats_sensorClass}.

--scs=<filename>
The name of a file that contains the sensor category information for each possible
sensor location in the network. For more details about the imperfect junction class file,
see File Formats Section \ref{formats_junctionClass}.

--version
A boolean flag to display version information.

Note: Options like reponseTime can be specified with the syntax
--responseTime 10.0 or --responseTime=10.0.

13.1.3 Arguments

<sensor-file>
A sensor placement file that contains one or more sensor network designs

that will be evaluated. If none, is specified, then evalsensor will evaluate
impacts without any sensors.

<impact-file>
A impact file that contains the impact data concerning the simulated contamination

incidents. If one or more impact files are specified, then evaluations are
performed for each impact separately.

153

13.2 filter_impacts

The filter_impacts script filters out the low-impact incidents from an impact file. The filter_impacts
command reads an impact file, filters out the low-impact incidents, rescales the impact values, and writes
out another impact file.

13.2.1 Usage

filter_impacts [options...] <impact-file> <out-file>

13.2.2 Options

--threshold=<val>
The contamination incidents with undetected impacts above a specified threshold should be kept.

--percent=<num>
The percentage of contamination incidents with the worst undetected impact that should be kept.

--num=<num>
The number of contamination incidents with the worst undetected impact that should be kept.

--rescale
Rescale the impacts using a log10 scale.

--round
Round input values to the nearest integer.

13.2.3 Arguments

<impact-file>
The input impact file.

<out-file>
The output impact file.

154

13.3 measuregen

The measuregen executable is used to create a simulated measurements file for sensor locations in a water
distribution network model. A node-time-concentration list is obtained by water quality simulations per-
formed in Merlion. The MEASURE.dat file contains the node-time-concentration list and can be used to
perform source inversion.

13.3.1 Usage

measuregen [options...] <required network option> <required scenario option> <sensor-file>

13.3.2 Options

Data format option:
--output-prefix=<filename>
The name to add to all output files.

EPANET input file options:
--quality-timestep-minutes=<num>
The size of the water quality time step used by Merlion to perform the water quality simulations.
When this value is specified, it overrides the value in the EPANET input file.

--simulation-duration-minutes=<num>
The length of water quality simulation in order to build the Merlion water quality model.
When this value is specified, it overrides the value in the EPANET input file. This is useful
when the length of the simulation specified in the EPANET input file is longer than the time
horizon in which the sensor measurements are needed. For instance, if the simulation duration
in the EPANET input is seven days, but sensor measurements are only needed for the first three
days of the simulation. This option reduces the memory required to build the Merlion water
quality model.

Label options:
--custom-label-map=<filename>
The name of a file which maps EPANET node names to custom labels. All data files will be written
using these custom labels.

--output-merlion-labels
Node names will be translated into integer node IDs to reduce file sizes for large networks.
A node map is provided to map node IDs back to node names (MERLION_LABEL_MAP.txt). This option
is overridden by the --custom-label-map flag.

Noise options:
--FNR=<num>
The false negative rate to apply to all sensors.

--FPR=<num>
The false positive rate to apply to all sensors.

--scale=<num>
The scaling value to add noise to the base demand.

--seed=<num>
The seed to generate the random number used at the moment of adding noise.

Other options:
--disable-warnings
A boolean flag to disables printing of warning statements to stderr.

--enable-logging
A boolean flag to generate a log file with verbose runtime information.

-h, --help
A boolean flag to display usage information.

155

--ignore-merlion-warnings
A boolean flag to ignore warnings about unsupported features of Merlion.

-v, --version
A boolean flag to display version information.

Save options:
--epanet-rpt-file
A boolean flag to save output file generated by EPANET during hydraulic simulations.

--merlion-save-file
A boolean flag to save the text file defining the Merlion water quality model.

Time options:
--concentrations
The concentration values will be printed in the measurement file.

--decay-const=<num>
The value for the first-order decay coefficient(1/min). The default value is taken from EPANET
input file.

--measures-per-hour=<num>
The number of measurements to take per hour. The default value is 60.

--start-sensing-time=<num>
The time to start taking measurements. This value is in minutes.

--stop-sensing-time=<num>
The time to stop taking measurements. This value is in minutes.

--threshold=<num>
The value of concentrations above which the measurements are positive. The default value is 0.0.

13.3.3 Arguments

<required network option>
--inp=<filename>
The name of the EPANET network file.

--wqm=<filename>
The name of the Merlion water quality model (wqm) file.

<required scenario option>
This argument defines the injection incidents to simulate in order
to obtain measurements at the sensor locations. Three options are
available to define the injection incidents.

--scn=<filename>
The name of the SCN file for specifying the injection incidents.

--tsg=<filename>
The name of the TSG file for specifying the injection incidents.

--tsi=<filename>
The name of the TSI file for specifying the injection incidents.

--tsi-species-id=<name>
(*optional) The single TSI species id to use in each scenario by Merlion. All other species
will be ignored. If this option is not used and multiple species ids are in the TSI
file, an error will occur.

<sensor node file>
A file with a list of sensor node names.

156

13.4 scenarioAggr

The scenarioAggr executable takes an impact file and produces an aggregated impact file. The
scenarioAggr executable reads an impact file, finds similar incidents, combines them, and writes out another
impact file. The convention is to append the string aggr to the output.

The following files are generated during the execution of scenarioAggr, assuming that the input was named
network.impact:

• aggrnetwork.impact - The new impact file.

• aggrnetwork.impact.prob - The probabilities of the aggregated incidents. These are non-uniform, so
any solver must recognize incident probabilities.

Not all of the solvers available in the sp command can perform optimization with aggregated impact files.
In particular, the heuristic GRASP solver does not currently support aggregation because it does not use
contamination incident probabilities. The Lagrangian and PICO solvers support contamination incident
aggregation. However, initial results suggest that although the number of contamination incidents is reduced
significantly, the number of impacts might not be, and solvers might not run much faster.

13.4.1 Usage

scenarioAggr --numEvents=<num_incidents> <impact file>

13.4.2 Options

--numEvents=<number>
The number of contamination incidents that should be aggregated.

13.4.3 Arguments

<impact-file>
The input impact file.

157

13.5 spotSkeleton

The skeletonizer, spotSkeleton, reduces the size of a network model by grouping neighboring nodes based
on the topology of the network and pipe diameter threshold. Nodes that are grouped together form a new
node, often referred to as a supernode. The spotSkeleton executable requires an EPANET INP network
file and a pipe diameter threshold. The executable creates a skeletonized EPANET INP network file and
map file. The map file defines the nodes that belong to each supernode.

The spotSkeleton executable includes branch trimming, series pipe merging and parallel pipe merging.
A pipe diameter threshold determines candidate pipes for skeleton steps. The spotSkeleton executable
maintains pipes and nodes with hydraulic controls as it creates the skeletonized network. It performs
series and parallel pipe merges if both pipes are below the pipe diameter threshold, calculating hydraulic
equivalency for each merge based on the average pipe roughness of the joining pipes. For all merge steps,
the larger diameter pipe is retained. For a series pipe merge, demands (and associated demand patterns) are
redistributed to the nearest node. Branch trimming removes deadend pipes smaller than the pipe diameter
threshold and redistributes demands (and associated demand patterns) to the remaining junction. The
spotSkeleton executable repeats these steps until no further pipes can be removed from the network. The
spotSkeleton executable creates an EPANET-compatible skeletonized network INP file and a map file that
contains the mapping of original network model nodes into skeletonized supernodes.

Under these skeletonization steps, there is a limit to how much a network can be reduced based on its topology,
e.g., number of deadend pipes, or pipes in series and parallel. For example, sections of the network with a
loop, or grid, structure will not reduce under these skeleton steps. Additionally, the number of hydraulic
controls influences skeletonization, as all pipes and nodes associated with these features are preserved.

Commercial skeletonization codes include Haestad Skelebrator, MWHSoft H2OMAP, and MWHSoft In-
foWater. To validate the spotSkeleton executable, its output was compared to the output of MWHSoft
H2OMAP and Infowater. Input parameters were chosen to match spotSkeleton options. Pipe diameter
thresholds of 8 inches, 12 inches and 16 inches were tested using two large networks. MWHSoft and WST
skeletonizers were compared using the Jaccard index. The Jaccard index measures similarity between two
sets by dividing the intersection of the two sets by the union of the two sets. In this case, the intersection
is the number of pipes that are either both removed or not removed by the two skeletonizers, and the union
is the number of all pipes in the original network. If the two skeletonizers define the same supernodes,
the Jaccard index equals 1. Skeletonized networks from the MWHSoft and WST skeletonizers resulted in a
Jaccard index between 0.93 and 0.95. Thus, the spotSkeleton executable is believed to be a good substitute
for commercial skeletonizers.

13.5.1 Usage

spotSkeleton <input inp file> <pipe diameter threshold> <output inp file> <output map file>

13.5.2 Arguments

<input inp file>
The input EPANET INP file to be skeletonized.

<pipe diameter threshold>
The pipe diameter threshold that determines which pipes might be skeletonized.

<output inp file>
The output EPANET INP file created after skeletonization.

<output map file>
The output map file that contains the mapping of original network nodes to
skeletonized supernodes.

158

References

Adams, B. M., Ebeida, M. S., Eldred, M. S., Jakeman, J. D., Swiler, L. P., Bohnhoff, W. J., Dal-
bey, K. R., Eddy, J. P., Hu, K. T., and Vigil, D. M. (2013). Dakota, a multilevel parallel object-
oriented framework for design optimization, parameter estimation, uncertainty quantifcation, and sen-
sitivity analysis. Technical Report SAND2010-2183, Sandia National Laboratories. Available at http:
//dakota.sandia.gov/documentation.html.

Berry, J., Hart, W. E., Phillips, C. E., Uber, J. G., and Watson, J.-P. (2006). Sensor placement in mu-
nicipal water networks with temporal integer programming models. J. Water Resources Planning and
Management, 132(4):218–224.

Bureau of Labor Statistics and U.S. Census Bureau (2005). American time use survey user’s guide 2003 to
2004. Technical report, Washington DC. Available at http://www.bls.gov/news.release/archives/
atus_09142004.pdf.

Daskin, M. (1995). Wiley, New York.

Davis, M. and Janke, R. (2008). Importance of exposure model in estimating impacts when a water distri-
bution system is contaminated. J. Water Resources Planning and Management, 134(5):449–456.

De Sanctis, A., Shang, F., and Uber, J. (2009). Real-time identification of possible contamination sources
using network backtracking methods. Journal of Water Resources Planning and Management, 136:444–
453.

Elloumi, S., Labbé, M., and Pochet, Y. (2004). INFORMS Journal on Computing, 16:83–94.

EPA, U. S. (2004). Response protocol toolbox: planning for and responding to drinking water contami-
nation threats and incidents. Technical report, U.S. Environmental Protection Agency, Office of Water,
Office of Ground Water and Drinking Water, Washington, D.C. Available at http://water.epa.gov/
infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf.

EPA, U. S. (2011). Teva-spot toolkit and user’s manual. Technical report, U.S. Environmental Protec-
tion Agency. Available at http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=
514412.

EPA, U. S. (2013a). Epanet-rtx, real-time extension for the epanet toolkit, at open water analytics. Technical
report, U.S. Environmental Protection Agency. Available at http://openwateranalytics.github.io/
epanet-rtx/index.html.

EPA, U. S. (2013b). Water security initiative. Technical report, U.S. Environmental Protection Agency.
Available at http://water.epa.gov/infrastructure/watersecurity/lawregs/initiative.cfm.

EPA, U. S. (2013c). Water security toolkit user manual version 1.2. Technical report, U.S. Environmental
Protection Agency.

Fourer, R., Gay, D. M., and Kernighan, B. W. (2002). AMPL: A Modeling Language for Mathematical
Programming. Brooks/Cole, Pacific Grove, CA, 2nd edition.

159

http://dakota.sandia.gov/documentation.html
http://dakota.sandia.gov/documentation.html
http://www.bls.gov/news.release/archives/atus_09142004.pdf
http://www.bls.gov/news.release/archives/atus_09142004.pdf
http://water.epa.gov/infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf
http://water.epa.gov/infrastructure/watersecurity/upload/2004_11_24_rptb_response_guidelines.pdf
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=514412
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=514412
http://openwateranalytics.github.io/epanet-rtx/index.html
http://openwateranalytics.github.io/epanet-rtx/index.html
http://water.epa.gov/infrastructure/watersecurity/lawregs/initiative.cfm

Geib, C., Taxon, T., and Hatchett, S. (2011). Epanet results database (erd), user’s guide, version 1.00.00.
Technical report.

Hart, D. B. and McKenna, S. A. (2012). Canary user’s manual, version 4.3.2. Technical Report
EPA/600/R/08/040B, Washington, D,C.: U.S. Environmental Protection Agency. Available at http:
//cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=513254.

Hart, W. E., Laird, C., Watson, J., and Woodruff, D. (2012). Pyomo - Optimization Modeling in Python.
Springer, 1st edition.

Hatchett, S., Uber, J., Boccelli, D., Haxton, T., Janke, R., Kramer, A., Matracia, A., and Panguluri, S.
(2011). Real-time distribution system modeling: development, application, and insights. In In Proc.
Eleventh International Conference on Computing and Control for the Water Industry, Sept. 2011, Exeter,
UK.

Janke, R., Morley, K., Uber, J., and Haxton, T. (2011). Real-time modeling for water distribution sys-
tem operation: Integrating security developed technologies with normal operations. In In Proc. AWWA
Distribution Systems Symposium and Water Security Conference, Sept. 2011, Nashville, TN.

Klise, K., Phillips, C., and Janke, R. (2013). Two-tiered sensor placement using skeletonized water distribu-
tion network models. Journal of Infrastructure Systems, (10.1061/(ASCE)IS.1943-555X.0000156).

Mann, A., Hackebeil, G., and Laird, C. (2012a). Explicit water quality model generation and rapid
multi-scenario simulation. J. Water Resources Planning and Management, (10.1061/(ASCE)WR.1943-
5452.0000278).

Mann, A., McKenna, S., Hart, W., and Laird, C. (2012b). Real-time inversion in large-scale water networks
using discrete measurements. Computers & Chemical Engineering, 37:143–151.

Mirchandani, P. and Francis, R., editors (1990). Discrete Location Theory. John Wiley and Sons, Toronto,
Canada.

Murray, R., Adcock, N., Rice, G., Uber, J., and Hatchett, S. (2011). Predicting pathogen survival when
introduced into a water distribution system with growth medium. In Proc. Water Quality Technology
Conference, Nov. 2011, Phoenix, AZ.

Murray, R., Haxton, T., Janke, R., Hart, W. E., Berry, J., and Phillips, C. (2010). Sensor network design
for drinking water contamination warning systems: A compendium of research results and case studies
using the teva-spot software. Technical Report EPA/600/R-09/141, Cincinnati, OH Office of Research and
Development, National Homeland Security Research Center, Water Infrastructure Protection. Available
at http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=498251.

Murray, R., Uber, J., and Janke, R. (2006). Model for estimating acute health impacts from consumption of
contaminated drinking water. J. Water Resources Planning and Management: Special Issue on Drinking
Water Distribution Systems Security, 132(4):293–299.

Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. J. of
Banking and Finance, 26(7):1443–1471.

Rossman, L. A. (2000). Epanet 2 users manual. Technical report, Environmental Protection Agency. Available
at http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf.

Shang, F., Uber, J., and Polycarpou, M. (2002). Particle backtracking algorithm for water distribution
system analysis. Journal of Environmental Engineering, 128:441–450.

Shang, F., Uber, J., and Rossman, L. (2011). Epanet mutli-species extension user’s manual. Technical Report
EPA/600/S-07/021, USEPA. Available at http://cfpub.epa.gov/si/si_public_file_download.cfm?
p_download_id=500759.

160

http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=513254
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=513254
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=498251
http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=500759
http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=500759

Topaloglou, N., Vladimirou, H., and Zenios, S. (2002). CVaR models with selective hedging for international
asset allocation. J. of Banking and Finance, (26):1535–1561.

U.S. Geological Survey (2004). Estimated use of water in the united states in 2000. Technical report, U.S.
Geological Survey. Available at http://pubs.usgs.gov/circ/2004/circ1268/pdf/circular1268.pdf.

Watson, J.-P., Hart, W. E., and Murray, R. (2006). Formulation and optimization of robust sensor placement
problems for contaminant warning systems. In In Proc. Water Distribution System Symposium.

161

http://pubs.usgs.gov/circ/2004/circ1268/pdf/circular1268.pdf

	Introduction
	Getting Started
	Obtaining the Water Security Toolkit
	Dependencies of the Water Security Toolkit
	Installing the Water Security Toolkit Binary Distributions
	Compiling the Water Security Toolkit Source Code
	Obtaining the Water Security Toolkit Source Code
	Configuring the Python Virtual Environment
	Building the C++ Executable Files

	Basic Usage of the Water Security Toolkit
	Verifying Installation of the Water Security Toolkit
	Uninstalling the Water Security Toolkit

	Contaminant Transport
	Hydraulic and Water Quality Analysis
	EPANET and EPANET-MSX
	Merlion

	Contaminant Transport Scenarios
	tevasim Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Contaminant Transport Examples
	Example 1
	Example 2

	Impact Assessment
	Impact Metrics
	Human Health Impact Model
	Population
	Cumulative Dose
	Response
	Disease Progression Model

	sim2Impact Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Impact Assessment Examples
	Example 1
	Example 2
	Example 3

	Sensor Placement
	Sensor Placement Formulations
	Expected-Impact Formulation
	Robust Formulations
	Side-Constrained Formulation
	Min-Cost Formulation

	Sensor Placement Solvers
	sp Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Sensor Placement Examples
	Example 1: Solving eSP with a MIP Solver
	Example 2: Evaluating Solutions to eSP with Multiple Impact Files
	Example 3: Solving eSP with a GRASP Solver
	Example 4: Solving wSP with a MIP Solver
	Example 5: Solving cvarSP with a MIP Solver
	Example 6: Solving scSP with a MIP Solver
	Example 7: Solving mcSP with a MIP Solver

	Hydrant Flushing
	Flushing Formulation
	Flushing Solvers
	Evolutionary Algorithm
	Network Solver

	flushing Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Flushing Response Examples
	Example 1
	Example 2
	Example 3

	Booster Station Placement
	Booster Placement Using Multi-species Reaction
	Booster MSX Solvers
	Evolutionary Algorithm
	Network Solver

	booster_msx Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Booster Placement Using Neutralization or Limiting Reagent Reaction
	Neutralization NEUTRAL Formulation
	Limiting Reagent LIMIT Formulation
	Booster MIP Solvers
	booster_mip Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Booster Placement Examples
	Example 1
	Example 2

	Source Identification
	Source Identification Formulations
	MIP Formulations
	Bayesian Probability Based Formulation
	Contaminant Status Algorithm (CSA)

	Source Identification Solvers
	inversion Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Source Identification Examples
	Example 1
	Example 2

	Grab Sampling
	Grab Sampling Formulation
	Grab Sampling Solvers
	grabsample Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Grab Sampling Example

	Visualization
	Color and Shape Options
	Data from YAML Files
	visualization Subcommand
	Configuration File
	Configuration Options
	Subcommand Output

	Visualization Examples
	Example 1
	Example 2

	Advanced Topics and Case Studies
	Merlion Water Quality Model
	Average-case Sensor Placement
	Computing a Bound on the Best Sensor Placement Value
	Managing Sensor Placement Locations
	Limited-Memory Sensor Placement Techniques
	Scenario Aggregation:
	Filtering Impacts:
	Feasible Locations:
	Witness Aggregation:
	Skeletonization:
	Explicit Memory Management:

	Evaluating a Sensor Placement

	Source Identification with Grab Samples Case Study
	Case Study
	Cycle 1
	Cycle 2
	Cycle 3

	Flushing with Source Identification Case Study

	File Formats
	Configuration File
	Cost File
	ERD File
	Impact File
	Imperfect Junction Class File
	Imperfect Sensor Class File
	Measurements File
	Nodemap File
	Scenariomap File
	Sensor Placement File
	TAI File
	TSG File
	TSI File
	Weight File

	Executable Files
	evalsensor
	Usage
	Options
	Arguments

	filter_impacts
	Usage
	Options
	Arguments

	measuregen
	Usage
	Options
	Arguments

	scenarioAggr
	Usage
	Options
	Arguments

	spotSkeleton
	Usage
	Arguments

	References

